The results of study into the effect of air­steam blast on the low­grade fuel gasification process

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.147545

Keywords:

air­steam gasification, gas generating plant, generator gas, heat of gas combustion, heat balance

Abstract

The design of a highly efficient gas generating plant with a direct­flow gas generator was proposed for gasification of low­grade fuels. The design includes a gas­air recuperator and an evaporator for preliminary preparation of air­steam mixture. The gasification process is fully controlled since operation of the evaporator is coordinated with operation of the blast gas supply system due to which humidity of the mixture fed to the gasification zone is programmed 10 mm pellets produced of rape stems were used as fuel.

Two­factor experiments have been carried out to estimate the effect of volume and humidity of blast air on the lower heat value of the generator gas and the mass fuel consumption in the gasification process. The effect of air volume and humidity on temperature of the air­steam mixture required for the gasification process was also investigated.

It has been established that the optimum temperature of the air­steam mixture was 550...570 oÑ and was achieved at the volume of blast gases entering the gas generator in the range of 37...42 m3/h and air humidity of 55...65 %. Under these conditions, the lower calorific value of the generator gas was 12.3 MJ/m3, which was 15.1 % higher than that of the gas obtained without the use of air­steam blast in the gasification process.

Consumption of pellets for the gasification process was reduced by 14.7 % and the volume of gas produced from a kilogram of pellets increased by 18 % to 3.2 m3/kg.

The total energy efficiency of using the given flowsheet in production of generator gas from pellets produced of rape stems was 23.5 %.

The innovative procedure of compiling heat balance for the process of air­steam gasification of plant materials was presented. According to the results of experimental studies, a heat balance has been compiled for the developed design of the gas generating plant. This balance has demonstrated high efficiency of the process of air­steam gasification. Efficiency factor of the direct­flow gas generator was 79 % and that of the gas generating plant as a whole was 74.6 %.

The presented studies can be used as a basis for modernized methodologies of thermal calculation of mobile and stationary gas generating plants

Author Biographies

Savelii Kukharets, Zhytomyr National Agroecological University Staryi blvd., 7, Zhytomyr, Ukraine, 10008

Doctor of Technical Sciences, Associate Professor, Head of Department

Department of Mechanics and Agroecosystems Engineering

Nataliya Tsyvenkova, Zhytomyr National Agroecological University Staryi blvd., 7, Zhytomyr, Ukraine, 10008

PhD, Associate Professor

Department of Mechanics and Agroecosystems Engineering

Yarosh Yaroslav, Zhytomyr National Agroecological University Staryi blvd., 7, Zhytomyr, Ukraine, 10008

PhD, Associate Professor, Dean

Department of Processes, Machines and Equipment in Agroengineering

Ivan Grabar, Zhytomyr National Agroecological University Staryi blvd., 7, Zhytomyr, Ukraine, 10008

Doctor of Technical Sciences, Professor, Head of Department

Department of Processes, Machines and Equipment in Agroengineering

Anna Нolubenko, Zhytomyr-Agrobildindustry LLC Promyslova str., 10, Zhytomyr, Ukraine, 10019

Engineer

References

  1. Patra, T. K., Sheth, P. N. (2015). Biomass gasification models for downdraft gasifier: A state-of-the-art review. Renewable and Sustainable Energy Reviews, 50, 583–593. doi: https://doi.org/10.1016/j.rser.2015.05.012
  2. Golub, G., Kukharets, S., Yarosh, Y., Kukharets, V. (2017). Integrated use of bioenergy conversion technologies in agroecosystems. INMATEH – Agricultural Engineering, 51 (1), 93–100.
  3. Ingle, N. A., Lakade, S. S. (2016). Design and Development of Downdraft Gasifier to Generate Producer Gas. Energy Procedia, 90, 423–431. doi: https://doi.org/10.1016/j.egypro.2016.11.209
  4. Heidenreich, S., Müller, M., Foscolo, P. U. (2016). Advanced Biomass Gasification. New Concepts for Efficiency Sncrease and Product Flexibility. Elsevier, 140. doi: https://doi.org/10.1016/c2015-0-01777-4
  5. Susastriawan, A. A. P., Saptoadi, H., Purnomo (2017). Small-scale downdraft gasifiers for biomass gasification: A review. Renewable and Sustainable Energy Reviews, 76, 989–1003. doi: https://doi.org/10.1016/j.rser.2017.03.112
  6. Patra, T. K., Nimisha, K. R., Sheth, P. N. (2016). A comprehensive dynamic model for downdraft gasifier using heat and mass transport coupled with reaction kinetics. Energy, 116, 1230–1242. doi: https://doi.org/10.1016/j.energy.2016.10.036
  7. Mykhailovskyi, A. Ye., Kalynovskyi, S. V. (2009). Pat. No. 86980 UA. Sposib formuvannia zony horinnia hazoheneratora i hazohenerator. No. a200614020; declareted: 28.12.2006; published: 10.06.2009, Bul. No. 11.
  8. Civenkova, N. M., Golubenko, A. A. (2012). Pat. No. 80582 UA. Gazogenerator. No. u201212030; declareted: 19.10.2012; published: 10.06.2013, Bul. No. 11.
  9. Pauls, J. H., Mahinpey, N., Mostafavi, E. (2016). Simulation of air-steam gasification of woody biomass in a bubbling fluidized bed using Aspen Plus: A comprehensive model including pyrolysis, hydrodynamics and tar production. Biomass and Bioenergy, 95, 157–166. doi: https://doi.org/10.1016/j.biombioe.2016.10.002
  10. Sheth, P. N., Babu, B. V. (2009). Experimental studies on producer gas generation from wood waste in a downdraft biomass gasifier. Bioresource Technology, 100 (12), 3127–3133. doi: https://doi.org/10.1016/j.biortech.2009.01.024
  11. Golub, G., Kukharets, S., Tsyvenkova, N., Yarosh, Ya., Chuba, V. (2018). Experimental study into the influence of straw content in fuel on parameters of generator gas. Eastern-European Journal of Enterprise Technologies, 5 (8 (95)), 76–86. doi: https://doi.org/10.15587/1729-4061.2018.142159
  12. Cuoci, A., Faravelli, T., Frassoldati, A. et. al. (2009). Mathematical modeling of gasification and combustion of solid fuels and wastes. Chemical Engineering transactions, 18. doi: http://doi.org/10.3303/CET0918162
  13. Melgar, A., Pérez, J. F., Laget, H., Horillo, A. (2007). Thermochemical equilibrium modelling of a gasifying process. Energy Conversion and Management, 48 (1), 59–67. doi: https://doi.org/10.1016/j.enconman.2006.05.004
  14. Reed, T. B., Das, A. (1988). Handbook of Biomass Downdraft Gasifier Engine Systems. Golden: Solar Energy Research Institute. doi: https://doi.org/10.2172/5206099
  15. Dejtrakulwong, C., Patumsawad, S. (2014). Four Zones Modeling of the Downdraft Biomass Gasification Process: Effects of Moisture Content and Air to Fuel Ratio. Energy Procedia, 52, 142–149. doi: https://doi.org/10.1016/j.egypro.2014.07.064
  16. Mysak, J., Lys, S., Martynyak-Andrushko, M. (2017). Research on gasification of low-grade fuels in a continuous layer. Eastern-European Journal of Enterprise Technologies, 2 (8 (86)), 16–23. doi: https://doi.org/10.15587/1729-4061.2017.96995
  17. Mezin, I. S. (1941). Vliyanie diametra i vysoty kamery gazifikacii na himicheskiy sostav gaza. Tr. nauch.-eksperim. i proekt. in-ta avtotransportnoy prom, 40.
  18. Jia, J., Xu, L., Abudula, A., Sun, B. (2018). Effects of operating parameters on performance of a downdraft gasifier in steady and transient state. Energy Conversion and Management, 155, 138–146. doi: https://doi.org/10.1016/j.enconman.2017.10.072
  19. Sepe, A. M., Li, J., Paul, M. C. (2016). Assessing biomass steam gasification technologies using a multi-purpose model. Energy Conversion and Management, 129, 216–226. doi: https://doi.org/10.1016/j.enconman.2016.10.018
  20. Sommariva, S., Grana, R., Maffei, T., Pierucci, S., Ranzi, E. (2011). A kinetic approach to the mathematical model of fixed bed gasifiers. Computers & Chemical Engineering, 35 (5), 928–935. doi: https://doi.org/10.1016/j.compchemeng.2011.01.036
  21. Gil, J., Corella, J., Aznar, M. P., Caballero, M. A. (1999). Biomass gasification in atmospheric and bubbling fluidized bed: Effect of the type of gasifying agent on the product distribution. Biomass and Bioenergy, 17 (5), 389–403. doi: https://doi.org/10.1016/s0961-9534(99)00055-0
  22. Corella, J., Toledo, J. M., Molina, G. (2008). Steam Gasification of Coal at Low-Medium (600−800 °C) Temperature with Simultaneous CO2Capture in a Bubbling Fluidized Bed at Atmospheric Pressure. 2. Results and Recommendations for Scaling Up. Industrial & Engineering Chemistry Research, 47 (6), 1798–1811. doi: https://doi.org/10.1021/ie0714192
  23. Herguido, J., Corella, J., Gonzalez-Saiz, J. (1992). Steam gasification of lignocellulosic residues in a fluidized bed at a small pilot scale. Effect of the type of feedstock. Industrial & Engineering Chemistry Research, 31 (5), 1274–1282. doi: https://doi.org/10.1021/ie00005a006
  24. Franco, C., Pinto, F., Gulyurtlu, I., Cabrita, I. (2003). The study of reactions influencing the biomass steam gasification process. Fuel, 82 (7), 835–842. doi: https://doi.org/10.1016/s0016-2361(02)00313-7
  25. Wang, Y., Kinoshita, C. M. (1992). Experimental analysis of biomass gasification with steam and oxygen. Solar Energy, 49 (3), 153–158. doi: https://doi.org/10.1016/0038-092x(92)90066-j
  26. Turn, S. (1998). An experimental investigation of hydrogen production from biomass gasification. International Journal of Hydrogen Energy, 23 (8), 641–648. doi: https://doi.org/10.1016/s0360-3199(97)00118-3
  27. Shahbaz, M., yusup, S., Inayat, A., Patrick, D. O., Ammar, M. (2017). The influence of catalysts in biomass steam gasification and catalytic potential of coal bottom ash in biomass steam gasification: A review. Renewable and Sustainable Energy Reviews, 73, 468–476. doi: https://doi.org/10.1016/j.rser.2017.01.153
  28. Dupont, C., Boissonnet, G., Seiler, J.-M., Gauthier, P., Schweich, D. (2007). Study about the kinetic processes of biomass steam gasification. Fuel, 86 (1-2), 32–40. doi: https://doi.org/10.1016/j.fuel.2006.06.011
  29. Mevissen, N., Schulzke, T., Unger, C. A., an Bhaird, S. M. (2009). Thermodynamics of autothermal wood gasification. Environmental Progress & Sustainable Energy, 28 (3), 347–354. doi: https://doi.org/10.1002/ep.10393
  30. Kim, Y. D., Yang, C. W., Kim, B. J., Kim, K. S., Lee, J. W., Moon, J. H. et. al. (2013). Air-blown gasification of woody biomass in a bubbling fluidized bed gasifier. Applied Energy, 112, 414–420. doi: https://doi.org/10.1016/j.apenergy.2013.03.072
  31. Ocampo, A., Arenas, E., Chejne, F., Espinel, J., Londoño, C., Aguirre, J., Perez, J. D. (2003). An experimental study on gasification of Colombian coal in fluidised bed. Fuel, 82 (2), 161–164. doi: https://doi.org/10.1016/s0016-2361(02)00253-3
  32. Zainal, Z. A., Ali, R., Lean, C. H., Seetharamu, K. N. (2001). Prediction of performance of a downdraft gasifier using equilibrium modeling for different biomass materials. Energy Conversion and Management, 42 (12), 1499–1515. doi: https://doi.org/10.1016/s0196-8904(00)00078-9
  33. Corella, J., Sanz, A. (2005). Modeling circulating fluidized bed biomass gasifiers. A pseudo-rigorous model for stationary state. Fuel Processing Technology, 86 (9), 1021–1053. doi: https://doi.org/10.1016/j.fuproc.2004.11.013
  34. Schuster, G., Löffler, G., Weigl, K., Hofbauer, H. (2001). Biomass steam gasification – an extensive parametric modeling study. Bioresource Technology, 77 (1), 71–79. doi: https://doi.org/10.1016/s0960-8524(00)00115-2
  35. Vasylkovskyi, O., Leshchenko, S., Vasylkovska, K., Petrenko, D. (2016). Pidruchnyk doslidnyka. Kirovohrad, 204.
  36. Kolienko, V., Pavlenko, A. (2013). The heat balance of the gasifier and determine the efficiency of the gasification process. Systemy upravlinnia, navihatsiyi ta zviazku, 1 (25), 33–39.
  37. Ferreira, S. D., Lazzarotto, I. P., Junges, J., Manera, C., Godinho, M., Osório, E. (2017). Steam gasification of biochar derived from elephant grass pyrolysis in a screw reactor. Energy Conversion and Management, 153, 163–174. doi: https://doi.org/10.1016/j.enconman.2017.10.006

Downloads

Published

2018-11-16

How to Cite

Kukharets, S., Tsyvenkova, N., Yaroslav, Y., Grabar, I., & Нolubenko A. (2018). The results of study into the effect of air­steam blast on the low­grade fuel gasification process. Eastern-European Journal of Enterprise Technologies, 6(8 (96), 86–96. https://doi.org/10.15587/1729-4061.2018.147545

Issue

Section

Energy-saving technologies and equipment