Entropy­based methods applied to the evaluation of a real refrigeration machine

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.147710

Keywords:

entropy methods, real refrigeration machine, air­cooled condenser, solid fouling

Abstract

The aim of the research is the thermodynamic analysis of a real refrigerating machine with solid fouling on the heat­exchange surface of an air­cooled condenser with the help of entropy methods such as: the entropy­cycle method, the entropy­statistical method and the entropy generation minimization method. The experimental data of the refrigerating machine with solid fouling in the form of dust on the external surface of the air­cooled condenser was used for the thermodynamic analysis.

The influence of irreversible losses in separate elements of the refrigerating machine caused by the presence of external solid fouling on the external heat exchange surface of the air­cooled condenser was determined according to the entropy­cycle and entropy­statistical methods. The entropy­cycle method has estimated the absolute value of energy losses in each element. The entropy­statistical method was used to determine the excessive consumption of work in the real cycle in comparison with the theoretical compression process in the compressor.

The irreversible losses associated with aerodynamics and heat transfer during air motion through a finned surface in an air­cooled heat exchanger were estimated by using the entropy generation minimization theory. The influence of growing fouling on the thermal and mechanical components of the total entropy generation in the heat exchanger was determined. In addition, the fouling mass that determines the time of its cleaning was defined.

Application of entropy methods for analyzing the real refrigerating machine at the design stage allows minimizing irreversible losses associated with operating conditions. Moreover, it allows predicting a maintenance schedule which contributes to energy saving

Author Biographies

Larisa Morozyuk, Odessa National Academy of Food Technologies Kаnаtnа str., 112, Оdеssа, Ukraine, 65039

Doctor of Technical Sciences, Professor

Department of cryogenic technique

Viktoriia Sokolovska-Yefymenko, Odessa National Academy of Food Technologies Kаnаtnа str., 112, Оdеssа, Ukraine, 65039

PhD, Associate Professor

Department of cryogenic technique

Sergey Gayduk, Odessa National Academy of Food Technologies Kаnаtnа str., 112, Оdеssа, Ukraine, 65039

PhD, Senior Lecturer

Department of cryogenic technique

Andrii Moshkatiuk, Odessa National Academy of Food Technologies Kаnаtnа str., 112, Оdеssа, Ukraine, 65039

Postgraduate student

Department of cryogenic technique

References

  1. Yang, L., Braun, J. E., Groll, E. A. (2004). The Role of Filtration in Maintaining Clean Heat Exchanger Coils. Final ReportARTI-21CR/611-40050-01. Air-Conditioning and Refrigeration Technology Institute (ARTI). doi: https://doi.org/10.2172/833362
  2. Lankinen, R., Suihkonen, J., Sarkomaa, P. (2003). The effect of air side fouling on thermal-hydraulic characteristics of a compact heat exchanger. International Journal of Energy Research, 27 (4), 349–361. doi: https://doi.org/10.1002/er.880
  3. Bell, I. H., Groll, E. A. (2010). Experimental comparison of the impact of air-side particulate fouling on the thermo-hydraulic performance of microchannel and plate-fin heat exchangers. International Refrigeration and Air Conditioning conference.
  4. Mehrabi, M., Yuill, D. (2018). Evaluation the effect of washing on the heat transfer capacity on air-side flow resistance of air cooled condensers. International Refrigeration and Air Conditioning conference.
  5. Morosuk, L. I., Sokolovska, V. V., Gaiduk, S. V., Moshkatuk, A. V. (2017). Method of Experimental Investigation of Air-Cooled Condensers for Small Refrigeration Machines and Heat Pumps. Refrigeration Engineering and Technology, 53 (3), 4–11. doi: https://doi.org/10.15673/ret.v53i3.674
  6. Metod – termodinamicheskiy analiz. Bol'shaya Enciklopediya Nefti i Gaza. Available at: http://www.ngpedia.ru/id145767p2.html
  7. Gohshteyn, D. P. (1967). Sovremennye metody termodinamicheskogo analiza energeticheskih ustanovok: na pravah rukopisi. Odessa, 333.
  8. Dolinskiy, A. A., Brodyanskiy, V. M. (Eds.) (1991). Eksergeticheskie raschety tekhnicheskih sistem. Kyiv: Naukova dumka, 360.
  9. Morosuk, T., Nikulshin, R., Morosuk, L. (2006). Entropy-cycle method for analysis of refrigeration machine and heat pump cycles. Thermal Science, 10 (1), 111–124. doi: https://doi.org/10.2298/tsci0601111m
  10. Morozyuk, L. I., Sokolovskaya, V. V., Ol'shevskaya, O. V. (2013). Termodinamicheskiy analiz teploobmennyh apparatov v sostave energopreobrazuyushchey sistemy entropiyno-ciklovym metodom. Vestnik Mezhdunarodnoy akademii holoda, 4, 24–27.
  11. Arharov, A. M. (2014). Osnovy kriologii. Entropiyno-statisticheskiy analiz nizkotemperaturnyh sistem. Moscow: izd-vo MGTU im. N. E. Baumana, 507.
  12. Arharov, A. M. (2010). O nekotoryh osobennostyah termodinamicheskogo analiza nizkotemperaturnyh sistem. Vestnik MGTU im. N. E. Baumana. Ser.: Mashinostroenie, 29–40.
  13. Arharov, A. M., Shishov, V. V. (2013). Entropiyno-statisticheskiy analiz raspredeleniya zatrat energii na kompensaciyu neobratimosti rabochih processov sistem kondicionirovaniya. Vestnik MGTU im. N. E. Baumana. Ser.: Mashinostroenie, 2, 84–97.
  14. Prigozhin, I. (1960). Vvedenie v termodinamiku neobratimyh processov. Moscow: Izd-vo inostr. lit-ry, 160.
  15. Bejan, A. (1982). Entropy Generation through Heat and Fluid Flow. New York: John Wiley & Sons, 264.
  16. Bejan, A., Tsatsaronis, G., Moran, M. (1996). Thermal Design and Optimization. New York: John Wiley & Sons, 540.
  17. Le Goff, P., De Olivera, S., Schwarzer, B., Tondeur, D. (1991). Comparison of the entropic exergetic and economic optima of a heat exchanger. Analesis of Thermal and Energy Systems, Proceedings of International Conference Athens. Athens, 105–116.
  18. Khan, W. A., Yovanovich, M. M., Culham, J. R. (2006). Optimization of microchannel heat sinks using entropy generation minimization method. Twenty-Second Annual IEEE Semiconductor Thermal Measurement and Management Symposium. doi: https://doi.org/10.1109/stherm.2006.1625210
  19. Yazdi, M. H., Abdullah, S., Hashim, I., Sopian, K., Zaharim, A. (2009). Entropy generation analysis of liquid fluid past embedded open parallel microchannels within the surface. European journal of scientific research, 28 (3), 462–470.
  20. Morozyuk, L. I. (2015). Optimization of heat exchangers of refrigeration machines by entropy generation minimization method. Eastern-European Journal of Enterprise Technologies, 4 (8 (76)), 42–48. doi: https://doi.org/10.15587/1729-4061.2015.47753

Downloads

Published

2018-11-20

How to Cite

Morozyuk, L., Sokolovska-Yefymenko, V., Gayduk, S., & Moshkatiuk, A. (2018). Entropy­based methods applied to the evaluation of a real refrigeration machine. Eastern-European Journal of Enterprise Technologies, 6(8 (96), 49–56. https://doi.org/10.15587/1729-4061.2018.147710

Issue

Section

Energy-saving technologies and equipment