Development of a spatial­dynamical model of the structure of clumps of toxic cyanobacteria for biosafty purposes

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.150273

Keywords:

spatial­dynamical model, cyanobacteria, bioproductive processes, colorimetric parameters, biosecurity

Abstract

We have devised a spatial­dynamic model that describes the structure of clusters of toxic cyanobacteria over large water areas. The application of the constructed model has been demonstrated in order to identify the structure of a cluster in digital photographs. The character of bioproductive processes that define the risk of accumulation of toxic microorganisms is determined by a series of parameters that can be measured remotely using aerospace methods (taking photographs). The proposed model, based on a digital image, makes it possible to restore the spatial­dynamic pattern of clusters by determining the state of bioproductive processes in different parts of the cluster. Information about such states is of great importance in order to optimize measures for eliminating the threat of toxicity.

Development of a given spatially­dynamic model is related to the need to identify the structure of clusters of toxic cyanobacteria in water areas in order to eliminate the threats to biosecurity. Such clusters are extremely complex objects and are not reproduced by either theoretical or full­scale models.

The constructed spatial­dynamic model makes it possible to discover a dynamic pattern of bioproductive processes in different parts of the accumulation of microorganisms. The applied significance of the results obtained is associated with increasing the effectiveness of measures for elimination of the threat of toxicity; in other words, given the model that we constructed, it becomes possible to detect the most effective plots in terms of eliminating the threat.

The result of employing the model to the digital images of toxic cyanobacteria agrees well with the hydrobiological realization of this type of objects

Author Biographies

Olena Vуsotska, Kharkiv National University of Radio Electronics Nauky ave., 14, Kharkiv, Ukraine, 61166

Doctor of Technical Sciences, Professor

Department of Information Control System

Marine Georgiyants, Kharkiv Medical Academy of Postgraduate Education Amosova str., 58, Kharkіv, Ukraine, 61176

MD, Professor

Department of Pediatrics Anesthesiology and Intensive Therapy

Kostiantyn Nosov, V. N. Karazin Kharkiv National University Svobody sq., 4, Kharkiv, Ukraine, 61022

PhD

Department of Theoretical and Applied Informatics

Yurii Balym, Kharkiv State Zooveterinary Academy Academichna str., 1, Mala Danylivka, Dergachіvsky district, Kharkiv region, Ukraine, 62341

Doctor of Veterinary Science, Professor

Department of Reproductology

Anna Pecherska, Kharkiv National University of Radio Electronics Nauky ave., 14, Kharkiv, Ukraine, 61166

PhD

Department of Information Control System

Andrii Porvan, Kharkiv National University of Radio Electronics Nauky ave., 14, Kharkiv, Ukraine, 61166

PhD, Associate Professor

Department of Information Control Systems

Sergey Pavlov, Kharkiv Medical Academy of Postgraduate Education Amosova str., 58, Kharkiv, Ukraine, 61176

Doctor of Biological Sciences, Professor

Central Research Laboratory

Victoriya Shekhovtsova, Kharkiv National University of Radio Electronics Nauky ave., 14, Kharkiv, Ukraine, 61166

PhD, Associate Professor

Department of Information Control Systems

Tetiana Klochko, National Aerospace University “Kharkiv Aviation Institute” Chkalova str., 17, Kharkiv, Ukraine, 61000

Senior Lecturer

Department of Chemistry, Ecology and Expertise Technology

Andrii Solodovnikov, Kharkiv National Medical University Nauky ave., 4, Kharkiv, Ukraine, 61022

PhD

Department of Medical and Biological Physics and Medical Informatics

References

  1. Bukvareva, E., Aleshchenko, G. (2013). Optimization, Niche and Neutral Mechanisms in the Formation of Biodiversity. American Journal of Life Sciences, 1 (4), 174–183. doi: https://doi.org/10.11648/j.ajls.20130104.16
  2. Margalef, R. (1968). Perspectives in Ecology Theory. University of Chicago Press, 112.
  3. Berman, T., Serruya, C., Gophen, M., Sukenik, A., Zohary, T. (Eds.) (2013). Annual Reports 1969–2013. LKDB-KLL.
  4. Karabashev, G. S., Evdoshenko, M. A. (2015). Spektral'nye priznaki cveteniya cianobakteriy v Baltiyskom more po dannym skanera MODIS. Sovremennye Problemy Distancionnogo Zondirovaniya Zemli iz Kosmosa, 12 (3), 158–170.
  5. Mugavero, R., Sabato, V., Basso, M., D’Amico, W., Benolli, F. (2015). Bioterrorism: New Technologies for Global Emergencies and Public Health. Journal of Information Privacy and Security, 11 (4), 262–273. doi: https://doi.org/10.1080/15536548.2015.1105658
  6. Sladkih, L. A., Zahvatov, M. G., Saprykin, E. I., Saharova, E. Yu. (2016). Tekhnologiya monitoringa sostoyaniya posevov po dannym distancionnogo zondirovaniya Zemli na yuge Zapadnoy Sibiri. Geomatika, 2, 39–48.
  7. Terekhin, E. A. (2015). NDVI seasonal dynamics of perennial grasses and its use for classification of their crops in the Belgorod region. Sovremennye Problemy Distancionnogo Zondirovaniya Zemli iz Kosmosa, 12 (1), 9–17.
  8. Mitchell, A. L., Rosenqvist, A., Mora, B. (2017). Current remote sensing approaches to monitoring forest degradation in support of countries measurement, reporting and verification (MRV) systems for REDD+. Carbon Balance and Management, 12 (1). doi: https://doi.org/10.1186/s13021-017-0078-9
  9. Kostadinov, T. S., Milutinović, S., Marinov, I., Cabré, A. (2016). Carbon-based phytoplankton size classes retrieved via ocean color estimates of the particle size distribution. Ocean Science, 12 (2), 561–575. doi: https://doi.org/10.5194/os-12-561-2016
  10. Nosov, K., Zholtkevych, G., Georgiyants, M., Vysotska, O., Balym, Y., Porvan, A. (2017). Development of the descriptive binary model and its application for identification of clumps of toxic cyanobacteria. Eastern-European Journal of Enterprise Technologies, 4 (4 (88)), 4–11. doi: https://doi.org/10.15587/1729-4061.2017.108285
  11. Bespalov, Y., Nosov, K., Kabalyants, P. S. (2017). Modeling systemic colorimetric parameters as a tool for processing images of clumps of toxic cyanobacteria targeted at their boundaries detection. bioRxiv. doi: https://doi.org/10.1101/232413
  12. Lavrova, O. Yu., Mityagina, M. I., Kostianoy, A. G. (2016). Kostianoy Satellite Methods for Detecting and Monitoring Marine Zones of Ecological Risk. Moscow: IKI RAN, 45–47.
  13. Darmofal, D. (2015). Spatial Analysis for the Social Sciences. Cambridge University Press. doi: https://doi.org/10.1017/cbo9781139051293
  14. Banerjee, A., Ray, S. (2019). Spatial Models and Geographic Information Systems. Encyclopedia of Ecology, 178–188. doi: https://doi.org/10.1016/b978-0-12-409548-9.11237-0
  15. Wang, T., Wang, R. (2018). A network-city model of spatial competition. Economics Letters, 170, 168–170. doi: https://doi.org/10.1016/j.econlet.2018.06.023
  16. Usó-Doménech, J.-L., Nescolarde-Selva, J.-A., Lloret-Climent, M., González-Franco, L., Alonso-Stenberg, K. (2018). Spatial model of a pyrophite shrub in Mediterranean terrestrial ecosystems. Ecological Modelling, 384, 333–340. doi: https://doi.org/10.1016/j.ecolmodel.2018.06.030
  17. Fu, Y., Zhao, J., Peng, W., Zhu, G., Quan, Z., Li, C. (2018). Spatial modelling of the regulating function of the Huangqihai Lake wetland ecosystem. Journal of Hydrology, 564, 283–293. doi: https://doi.org/10.1016/j.jhydrol.2018.07.017
  18. D’Silva, J. P., Eisenberg, M. C. (2017). Modeling spatial invasion of Ebola in West Africa. Journal of Theoretical Biology, 428, 65–75. doi: https://doi.org/10.1016/j.jtbi.2017.05.034
  19. Hefley, T. J., Hooten, M. B., Hanks, E. M., Russell, R. E., Walsh, D. P. (2017). Dynamic spatio-temporal models for spatial data. Spatial Statistics, 20, 206–220. doi: https://doi.org/10.1016/j.spasta.2017.02.005
  20. Wheeler, D. C., Waller, L. A. (2008). Mountains, valleys, and rivers: The transmission of raccoon rabies over a heterogeneous landscape. Journal of Agricultural, Biological, and Environmental Statistics, 13 (4), 388–406. doi: https://doi.org/10.1198/108571108x383483
  21. Zholtkevych, G. N., Bespalov, G. Y., Nosov, K. V., Abhishek, M. (2013). Discrete Modeling of Dynamics of Zooplankton Community at the Different Stages of an Antropogeneous Eutrophication. Acta Biotheoretica, 61 (4), 449–465. doi: https://doi.org/10.1007/s10441-013-9184-6
  22. Zholtkevych, G. N., Nosov, K. V., Bespalov, Y. G., Rak, L. I., Vysotskaya, E. V., Balkova, Y. B., Kolomiychenko, V. K. (2017). Descriptive Models of System Dynamics. Communications in Computer and Information Science, 97–114. doi: https://doi.org/10.1007/978-3-319-69965-3_6
  23. Balym, Y., Vуsotska, O., Pecherska, A., Bespalov, Y. (2017). Mathematical modeling of systemic colorometric parameters unmasking wild waterfowl. Eastern-European Journal of Enterprise Technologies, 5 (2 (89)), 12–18. doi: https://doi.org/10.15587/1729-4061.2017.110107
  24. Kim, S.-K. (Ed.) (2015). Handbook of Marine Microalgae. Academic Press, 604. doi: https://doi.org/10.1016/c2013-0-19117-9
  25. Monitoring and Responding to Cyanobacteria and Cyanotoxins in Recreational Waters. Available at: https://www.epa.gov/nutrient-policy-data/monitoring-and-responding-cyanobacteria-and-cyanotoxins-recreational-waters
  26. Toxic Cyanobacterial Blooms. Available at: https://www.nalms.org/nalms-position-papers/toxic-cyanobacterial-blooms
  27. Cyanobacteria blooms found in Forge Pond and Peconic Lake; health officials warn residents to stay out of the water. Available at: https://riverheadlocal.com/2016/07/11/cyanobacteria-blooms-found-forge-pond-peconic-lake-health-officials-warn-residents-stay-water
  28. Toxic Algae, Drinking Water and Why Madison Won’t be Toledo. Available at: https://yaharawsc.wordpress.com/2014/08/05/toxic-algae-drinking-water-and-why-madison-wont-be-toledo

Downloads

Published

2018-12-10

How to Cite

Vуsotska O., Georgiyants, M., Nosov, K., Balym, Y., Pecherska, A., Porvan, A., Pavlov, S., Shekhovtsova, V., Klochko, T., & Solodovnikov, A. (2018). Development of a spatial­dynamical model of the structure of clumps of toxic cyanobacteria for biosafty purposes. Eastern-European Journal of Enterprise Technologies, 6(10 (96), 64–75. https://doi.org/10.15587/1729-4061.2018.150273