Development of a sol-gel technique for obtaining sintering activators for engobe coatings

Authors

  • Olena Khomenko Ukrainian State University of Chemical Engineering Gagarina ave., 8, Dnipro, Ukraine, 49005, Ukraine https://orcid.org/0000-0002-3753-3033
  • Eugene Alekseev Ukrainian State University of Chemical Engineering Gagarina ave., 8, Dnipro, Ukraine, 49005, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2018.150606

Keywords:

sol-gel technique, sintering activator, engobe, annealing, water absorption

Abstract

We have developed a technology for manufacturing the glass ligaments-activators to intensify the sintering of ceramic materials, specifically engobe coatings. The comparative analysis has been performed into the glass ligaments obtained through a conventional glass melting and by applying the sol-gel synthesis. Large efficiency of the latter has been established related to the reduced energy costs required to thermally treat a composition (rather than melting glass at 1,300–1,400 °C, gel is to be thermally treated to 600 °C) as well as to the improved homogeneity of the glass ligament (chemical formulation of the composition is averaged at a molecular level).

Different sol-gel techniques for obtaining glass ligaments-activators have also been examined: a powder sol-gel technique without calcination; a sol-gel technique for the preparation of solutions of salts; a powder sol-gel technique with the composition melting. The specified techniques differ in the sequence and method for mixing the source components, while their dispersion in a gel-forming agent the ethyl silicate ETS-40 is mandatory. The chosen basic components of the activator were soluble salts Al(NO3)3·9H2O, Ca(NO3)2 and NaNO3. We have investigated pattern in change of the phase composition of glass ligaments at their heating to 600 °C. It has been established that all obtained compositions approach the amorphous state at temperatures of ~600 °C. Further heating of the examined glass ligaments to 1,000 °C leads to their intensive melting. In this case, for the first two techniques, the viscosity and surface tension of melts are less compared to the melt of conventional glass, and, therefore, the wetting capacity of glass ligaments-activators is higher.

When introducing these sintering activators to the compositions of ceramic coatings, it was established that the most effective is the activator that was obtained by a technique for the preparation of salt solutions. It is the one that provides, after annealing at 1,170 °C, for the densest structure of the sintered coating with reduced water absorption (not exceeding 0.05 %) and high whiteness of the surface (87–88 %). The activators that we developed could become an alternative to conventional glass-ligaments whose melting requires considerable energy costs

Author Biographies

Olena Khomenko, Ukrainian State University of Chemical Engineering Gagarina ave., 8, Dnipro, Ukraine, 49005

PhD, Associate Professor

Department of Chemical Technology of Ceramics and Glass

Eugene Alekseev, Ukrainian State University of Chemical Engineering Gagarina ave., 8, Dnipro, Ukraine, 49005

Department of Chemical Technology of Ceramics and Glass

References

  1. Kuang, X., Carotenuto, G., Nicolais, L. (1997). Advanced Performance Materials, 4 (3), 257–274. doi: https://doi.org/10.1023/a:1008621020555
  2. Lu, J., Li, Y., Zou, C., Liu, Z., Wang, C. (2018). WITHDRAWN: Effect of sintering additives on the densification, crystallization and flexural strength of sintered glass-ceramics from waste granite powder. Materials Chemistry and Physics. doi: https://doi.org/10.1016/j.matchemphys.2018.02.010
  3. Gur'eva, V. A. (2011). Aktivaciya processa spekaniya alyumomagnezial'nyh keramicheskih mass. Vestnik OGU, 5 (124), 171–174.
  4. Semchenko, G. D. (1997). Zol'-gel' process v keramicheskoy tekhnologii. Kharkiv, 298.
  5. Shabanova, N. A. (2012). Zol'-gel' tekhnologii. Nanodispersnyy kremnezem. Moscow, 328.
  6. Obata, A., Kasuga, T. (2009). SiO2-CaO-P2O5 sol-gel-derived glass coating on porous β-tricalcium phosphate ceramics. Journal of the Ceramic Society of Japan, 117(1370), 1120–1125. doi: https://doi.org/10.2109/jcersj2.117.1120
  7. Sakka, S. (1987). Sol-Gel Glasses and their Future Applications. Transactions of the Indian Ceramic Society, 46 (1), 1–11. doi: https://doi.org/10.1080/0371750x.1987.10822820
  8. Zheng, M., Yu, R., Chen, J., Zhao, J., Liu, G., Xing, X., Meng, J. (2008). Synthesis and Characterization of (Zn,Cd)TiO3by a Modified Sol–Gel Method. Journal of the American Ceramic Society, 91 (2), 544–547. doi: https://doi.org/10.1111/j.1551-2916.2007.02131.x
  9. Andrianov, N. T., Abdel'-gavad, S. R., Zenkova, N. V. (2006). Sintez i spekanie kordieritovyh zol'-gel' poroshkov na osnove razlichnyh soley magniya. Steklo i keramika, 12, 19–22.
  10. Atkinson, A., Doorbar, J., Segal, D. L., White, P. J. (1998). Sol-Gel Ceramic Pigments. Key Engineering Materials, 150, 15–20. doi: https://doi.org/10.4028/www.scientific.net/kem.150.15
  11. Innocenzi, P., Zub, Y. L., Kessler, V. G. (Eds.) (2008). Sol-Gel Methods for Materials Processing. Dordrecht. doi: https://doi.org/10.1007/978-1-4020-8514-7
  12. Vinogradov, A. V., Vinogradov, V. V. (2014). Low-temperature sol–gel synthesis of crystalline materials. RSC Adv., 4 (86), 45903–45919. doi: https://doi.org/10.1039/c4ra04454a
  13. Bobkova, N. M. (2007). Fizicheskaya himiya tugoplavkih nemetallicheskih i silikatnyh materialov. Minsk, 301.
  14. Guzman, I. Ya. (Ed.) (2005). Praktikum po tekhnologii keramiki. Moscow, 334.
  15. Guzman, I. Ya. (Ed.) (2011). Himicheskaya tekhnologiya keramiki. Moscow, 496.
  16. Rabinovich, V. A., Nikol'skiy, B. N. (Eds.) (1963). Spravochnik himika. Vol. 2. Osnovnye svoystva neorganicheskih i organicheskih soedineniy. Ch. 1. Leningrad-Moscow, 540.
  17. Panasyuk, G. P., Ambarcyumyan, G. V. (1988). Formirovanie struktury amorfnogo kremnezema, poluchennogo gidrolizom tetraetoksisilana s posleduyushchey termoobrabotkoy. Izvestiya AN SSSR. Neorganicheskie, materialy, 24 (5).
  18. Poddenezhniy, E. N., Boyko, A. A. (2003). Klassifikaciya sposobov polucheniya ul'tradispersnyh oksidnyh poroshkov (obzor). Vestnik Gomel'skogo gosudarstvennogo tekhnicheskogo universiteta im. P. O. Suhogo, 1, 21–28.
  19. Alieksieiev, Ye. V., Kolieda, V. V., Mykhailiuta, O. S. et. al. (2009). Sklozviazky, oderzhani zol-hel metodom – efektyvni aktyvatory spikannia keramichnykh materialiv. Vestnik NTU "KhPI". Ser.: Himiya, himicheskaya tekhnologiya i ekologiya, 45, 21–26.
  20. Mykhailiuta, O. S., Alieksieiev, Ye. V., Kolieda, V. V., Andrianova, S. Yu., Zaichuk, O. V. (2008). Pat. No. 89587 UA. Anhob. No. a200810548; declareted: 20.08.2008; published: 10.02.2010, Bul. No. 3.

Downloads

Published

2018-12-12

How to Cite

Khomenko, O., & Alekseev, E. (2018). Development of a sol-gel technique for obtaining sintering activators for engobe coatings. Eastern-European Journal of Enterprise Technologies, 6(6 (96), 43–51. https://doi.org/10.15587/1729-4061.2018.150606

Issue

Section

Technology organic and inorganic substances