Studying the physicochemical regularities in the color- and phase formation processes of clinker ceramic materials

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.150659

Keywords:

clinker ceramic materials, polymineral clays, anthropogenic materials, sintering intensifiers, color-carrying phases

Abstract

The paper reports results of a comprehensive study, aimed at developing formulation-technological parameters for obtaining volumetrically dyed clinker ceramic materials with a wide range of colors. A possibility has been proven to obtain a ceramic clinker when using the polymineral clay raw materials at a temperature of 1,100 °C. The expediency has been shown to replace expensive ceramic pigments in the composition of masses with anthropogenic materials containing the oxides of metals with variable valency: wastes from alkaline earth syenite extraction, pegmatite enrichment, and production of ferrotitanium alloys. This shows possibilities for reducing the production cost of clinker ceramic articles. The influence of the formulation of raw materials compositions on the processes of color- and phase-formation of ceramic clinker has been investigated, depending on the character of furnace atmosphere. It was established that the brown coloration of clinker ceramics under conditions of oxidative annealing is predetermined by the presence of phases of hematite α-Fe2O3 and Mn2O3. At annealing in a reducing medium, products acquire color in the range from dark brown to black at the expense of formation of magnetite Fe3O4 and gaussmanite Mn3O4. The products' terracotta color is due to the presence of phases of hematite and hedenbergitis CaFeSi2O6. The condition for obtaining clinker ceramics of yellow color is to limit the formulation's content of Fe2O3 to 3 % by weight, as well as the presence of the SiO2 rutile phase.

The paper illustrates the effect of the overall content of oxides of metals with a variable valence S(Fe2O3+FeO+MnO+Mn3O4) on the coloration characteristics of clinker ceramics. The ratios have been derived between the phase-forming oxides Fe2O3/(Al2O3+CaO), (Fe2O3+Mn2O3)/(FeO+Mn3O4) and TiO2/(Al2O3+CaO), as well as the limits in their variation, providing for the formation of color-carrying phases responsible for obtaining products of the desired color under conditions of oxidative and reductive annealing

Author Biographies

Olena Fedorenko, National Technical University "Kharkiv Polytechnic Institute" Kyrpychova str., 2, Kharkiv, Ukraine, 61002

Doctor of Technical Sciences, Professor

Department of Technology of Ceramics, Refractories, Glass and Enamels

Larysa Prysiazhna, National Technical University "Kharkiv Polytechnic Institute" Kyrpychova str., 2, Kharkiv, Ukraine, 61002

Postgraduate student

Department of Тechnology of Ceramics, Refractories, Glass and Enamels

Serhii Petrov, National Technical University "Kharkiv Polytechnic Institute" Kyrpychova str., 2, Kharkiv, Ukraine, 61002

PhD, Associate Professor

Department of Organic Synthesis and Nanotechnology

Maryna Chyrkina, National University of Civil Defence of Ukraine Chernyshevska str., 94, Kharkiv, Ukraine, 61023

PhD, Associate Professor

Department of special chemistry and chemical technology

Oksana Borysenko, Simon Kuznets Kharkiv National University of Economics Nauky ave., 9-A, Kharkiv, Ukraine, 61166

PhD, Associate Professor

Department of environmental technologies, ecology and safety of vital activity

References

  1. Fernandez, J. (2012). Material Architecture. Emergent Materials for Innovative Buildings and Ecological Construction. Elsevier, 344. doi: https://doi.org/10.4324/9780080940441
  2. Koss, L. S., Fedorenko, E. Yu., Lesnyh, N. F., Ryschenko, M. I., Ryschenko, O. D. (2018). Modern diagnostic methods and technological principles of fabrication of bioresistant ceramic materials. Voprosy khimii i khimicheskoi tekhnologii, 1, 78–86. Available at: http://udhtu.edu.ua/public/userfiles/file/VHHT/2018/1/Koss.pdf
  3. Afsari, K., Swarts, M. E., Gentry, T. R. (2014). Integrated generative technique for interactive design of brickworks. Journal of Information Technology in Construction, 19, 225‒247.
  4. Fedorenko, O. Yu., Bilostotska, L. O., Bohdanova, K. B., Polukhina, K. S., Pavlova, L. V. (2018). Surface coloring with solutions of salts of densely baked ceramic materials. Voprosy Khimii i Khimicheskoi Tekhnologii, 6, 139–147. doi: https://doi.org/10.32434/0321-4095-2018-121-6-139-147
  5. Pishch, I. V., Maslennikova, G. N., Gvozdeva, N. A., Klimosh, Y. A., Baranovskaya, E. I. (2007). Methods of dyeing ceramic brick. Glass and Ceramics, 64 (7-8), 270–273. doi: https://doi.org/10.1007/s10717-007-0067-7
  6. Mustafin, N. R., Aschmarin, G. D. (2006). Die Klinkerkeramik auf Grund des Kieselerderohstoffes und der technogenischen Abfallstoffe. Keramische Zeitschrift, 4, 80–81.
  7. Pishch, I. V., Biryuk, V. A., Klimosh, Yu. A., Popov, R. Yu., Mikulich, T. N. (2017). Poluchenie klinkernogo kirpicha na osnove mineral'nogo syr'ya respubliki Belarus'. Proceedings of the National Academy of Sciences of Belarus. Chemical series, 4, 90–98.
  8. Khomenko, E. S., Purdik, A. V. (2017). Particulars of Microstructure Formation in Clinker Ceramic. Glass and Ceramics, 74 (1-2), 48–51. doi: https://doi.org/10.1007/s10717-017-9926-z
  9. Yatsenko, N. D., Yatsenko, E. A., Zakarlyuka, S. G. (2017). Phase Composition and Properties of Building Ceramic as a Function of the Contents of Calcium Carbonates and Iron Oxides. Glass and Ceramics, 73 (9-10), 319–322. doi: https://doi.org/10.1007/s10717-017-9881-8
  10. Valanciene, V., Siauciunas, R., Baltusnikaite, J. (2010). The influence of mineralogical composition on the colour of clay body. Journal of the European Ceramic Society, 30 (7), 1609–1617. doi: https://doi.org/10.1016/j.jeurceramsoc.2010.01.017
  11. Valanciene, V., Siauciunas, R., Baltusnikaite, J. (2010). The influence of mineralogical composition on the colour of clay body. Journal of the European Ceramic Society, 30 (7), 1609–1617. doi: https://doi.org/10.1016/j.conbuildmat.2004.04.035
  12. De Bonis, A., Cultrone, G., Grifa, C., Langella, A., Leone, A. P., Mercurio, M., Morra, V. (2017). Different shades of red: The complexity of mineralogical and physico-chemical factors influencing the colour of ceramics. Ceramics International, 43 (11), 8065–8074. doi: https://doi.org/10.1016/j.ceramint.2017.03.127
  13. Maritan, L., Nodari, L., Mazzoli, C., Milano, A., Russo, U. (2006). Influence of firing conditions on ceramic products: Experimental study on clay rich in organic matter. Applied Clay Science, 31 (1-2), 1–15. doi: https://doi.org/10.1016/j.clay.2005.08.007
  14. Pontikes, Y., Rathossi, C., Nikolopoulos, P., Angelopoulos, G. N., Jayaseelan, D. D., Lee, W. E. (2009). Effect of firing temperature and atmosphere on sintering of ceramics made from Bayer process bauxite residue. Ceramics International, 35 (1), 401–407. doi: https://doi.org/10.1016/j.ceramint.2007.11.013
  15. Rathossi, C., Pontikes, Y. (2010). Effect of firing temperature and atmosphere on ceramics made of NW Peloponnese clay sediments: Part II. Chemistry of pyrometamorphic minerals and comparison with ancient ceramics. Journal of the European Ceramic Society, 30 (9), 1853–1866. doi: https://doi.org/10.1016/j.jeurceramsoc.2010.02.003
  16. Yustova, E. N. (2000). Cvetovye izmereniya (Kolorimetriya). Sankt-Petrburg: Izd-vo SPb. un-ta, 397.

Downloads

Published

2018-12-12

How to Cite

Fedorenko, O., Prysiazhna, L., Petrov, S., Chyrkina, M., & Borysenko, O. (2018). Studying the physicochemical regularities in the color- and phase formation processes of clinker ceramic materials. Eastern-European Journal of Enterprise Technologies, 6(6 (96), 58–65. https://doi.org/10.15587/1729-4061.2018.150659

Issue

Section

Technology organic and inorganic substances