Technological features in obtaining highly effective hydrogel dressings for medical purposes

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.150690

Keywords:

hydrogel medical dressings, silver-containing hydrogels, centrifugal formation, metal-polymeric composites, trophic ulcers

Abstract

The new technology of formation of hydrogel dressings for medical purposes, containing particles of silver was developed. To obtain metal-containing composite hydrogels, we proposed a high-tech single-stage method, which involves polymerization of polymer-monomer compositions based on polyvinyl-pyrrolidone and 2-hydroxyethylmethacrylate with simultaneous chemical reduction of silver ions from its nitrate by ethanol. It was found by the thermometric research that the temperature conditions needed for chemical reduction of silver ions are achieved due to the heat, which is released at the exothermic polymerization reaction. The temporal and temperature parameters of polymerization depending on the composition of the original polymer-monomer composition, the content of solvent and of the initiator, and silver nitrate concentration were determined. They include the initial temperature of polymerization, maximum exothermic temperature, the time of reaching the maximum exothermic temperature, and duration of effect gel. The use of combined initiating system of iron (II) sulfate + benzoyl peroxide makes it possible to implement the process of obtaining hydrogels, containing silver particles, at room temperature, in the open air. The synthesis is technologically simple and is executed without complicated apparatus design. The authors proposed a new technology of formation of hydrogel films with the use of the centrifugal method. Polymerization with silver deposition occurs in the centrifugal form simultaneously with film formation, which allows obtaining the materials with predictable properties that have a uniform distribution of the filler with equal thickness and high quality surfaces in the polymer matrix. The film products obtained as a result of the developed technology can swell in water and other polar solvents, are characterized by durability, elasticity, bactericidal and antifungal properties. The results of the clinical studies showed sufficient clinical effectiveness of using the developed hydrogel dressings for medical purposes based on hydrogels, containing silver particles. Such materials in combination with the integrated therapy help to increase the speed and intensity of treatment of trophic venous ulcers of lower limbs

Author Biographies

Oleksandr Grytsenko, Lviv Polytechnic National University S. Bandery str., 12, Lviv, Ukraine, 79013

Doctor of Technical Sciences, Associate Professor

Department of Chemical Technology of Plastics Processing

Anna Pokhmurska, Lviv Polytechnic National University S. Bandery str., 12, Lviv, Ukraine, 79013

Postgraduate student

Department of Chemical Technology of Plastics Processing

Sofiia Suberliak, Lviv Polytechnic National University S. Bandery str., 12, Lviv, Ukraine, 79013

Postgraduate student

Department of Technology of Biologically Active Compounds, Pharmacy and Biotechnology

Mykola Kushnirchuk, Danylo Halytsky Lviv National Medical University Pekarska str., 69, Lviv, Ukraine, 79010

PhD, Assistant

Department of General Surgery

Marta Panas, Danylo Halytsky Lviv National Medical University Pekarska str., 69, Lviv, Ukraine, 79010

PhD, Associate Professor

Department of Microbiology

Volodymyr Moravskyi, Lviv Polytechnic National University S. Bandery str., 12, Lviv, Ukraine, 79013

PhD, Associate Professor

Department of Chemical Technology of Plastics Processing

Roman Kovalchuk, Hetman Petro Sahaidachnyi National Army Academy Heroiv Maidanu str., 32, Lviv, Ukraine, 79012

PhD, Associate Professor

Department of Engineering Mechanics (Weapons and Equipment of Military Engineering Forces)

References

  1. Schexnailder, P., Schmidt, G. (2008). Nanocomposite polymer hydrogels. Colloid and Polymer Science, 287 (1), 1–11. doi: https://doi.org/10.1007/s00396-008-1949-0
  2. Nicolais, L., Carotenuto, G. (Eds.) (2004). Metal-Polymer Nanocomposites. John Wiley & Sons. doi: https://doi.org/10.1002/0471695432
  3. Grytsenko, O., Spišák, E., Dulebová, Ľ., Moravskii, V., Suberlyak, O. (2015). Sorption Capable Film Coatings with Variable Conductivity. Materials Science Forum, 818, 97–100. doi: https://doi.org/10.4028/www.scientific.net/msf.818.97
  4. Vashchuk, V. V., Kyryk, T. P., Kushnirchuk, M. I., Baidala, R. P., Ivanyshyn, A. Z., Hrytsenko, O. M. (2018). Nova metodyka mistsevoi terapiyi trofichnykh vyrazok nyzhnikh kintsivok. Kharkivska khirurhichna shkola, 1, 51–53.
  5. Norman, G., Dumville, J. C., Westby, M. J., Stubbs, N., Soares, M. O. (2017). Dressings and topical agents for treating venous leg ulcers. Cochrane Database of Systematic Reviews. doi: https://doi.org/10.1002/14651858.cd012583
  6. O’Meara, S., Richardson, R., Lipsky, B. A. (2014). Topical and Systemic Antimicrobial Therapy for Venous Leg Ulcers. JAMA, 311 (24), 2534. doi: https://doi.org/10.1001/jama.2014.4574
  7. Raffetto, J. D., Eberhardt, R. T., Dean, S. M., Ligi, D., Mannello, F. (2016). Pharmacologic treatment to improve venous leg ulcer healing. Journal of Vascular Surgery: Venous and Lymphatic Disorders, 4 (3), 371–374. doi: https://doi.org/10.1016/j.jvsv.2015.10.002
  8. Savchyn, V. S., Lukavetskyi, O. V., Huda, N. V., Stoianovskyi, I. V., Chemerys, O. M., Tuziuk, N. V. (2015). Pat. No. 111557 UA. Method for treating wounds using lyophilized xenodermografts containing silver as antibacterial component. No. a201504337; declareted: 05.05.2015; published: 10.05.2016, Bul. No. 9.
  9. Vlasenko, I. O., Ivanov, E. A., Davtian, L. L., Popovych, V. P. (2014). Study of assortment of medicinal agents for local treatment of trophic ulcers. Zbirnyk naukovykh prats spivrobitnykiv NMAPO im. P. L. Shupyka, 23 (4), 437–446.
  10. Suberlyak, O., Grytsenko, O., Hischak, Kh., Hnatchuk, N. (2013). Researching influence the nature of metal on mechanism of synthesis polyvinilpyrrolidone metal copolymers. Chemistry & Chemical technology, 7 (3), 289–294.
  11. Kacarevic-Popovic, Z., Dragasevic, M., Krkljes, A., Popovic, S., Jovanovic, Z., Tomic, S., Miskovic-Stankovic, V. (2010). On the Use of Radiation Technology for Nanoscale Engineering of Silver/Hydrogel Based Nanocomposites for Potential Biomedical Application. The Open Conference Proceedings Journal, 1 (1), 200–206. doi: https://doi.org/10.2174/22102892010010100200
  12. Palza, H. (2015). Antimicrobial Polymers with Metal Nanoparticles. International Journal of Molecular Sciences, 16 (1), 2099–2116. doi: https://doi.org/10.3390/ijms16012099
  13. Hres, O. V., Lebediev, Ye. V., Matiushov, V. F. (2008). Silver-containing polymer nanocomposites. Polimernyi zhurnal, 30 (3), 186–191.
  14. Shmakov, S. N. (2008). Synthesis and properties of silver nanoparticles stabilized by polymers. Abstr. III Int. Workshop «Specialty polymers for environmentprotection, bio-, nanotechnology and medicine». Almaty, 14.
  15. Tarnavchyk, I., Voronov, A., Kohut, A., Nosova, N., Varvarenko, S., Samaryk, V., Voronov, S. (2009). Reactive Hydrogel Networks for the Fabrication of Metal-Polymer Nanocomposites. Macromolecular Rapid Communications, 30 (18), 1564–1569. doi: https://doi.org/10.1002/marc.200900285
  16. Yanez, F., Concheiro, A., Alvarezlorenzo, C. (2008). Macromolecule release and smoothness of semi-interpenetrating PVP–pHEMA networks for comfortable soft contact lenses. European Journal of Pharmaceutics and Biopharmaceutics, 69 (3), 1094–1103. doi: https://doi.org/10.1016/j.ejpb.2008.01.023
  17. Samaryk, V., Varvarenko, S., Tarnavchyk, I., Nosova, N., Puzko, N., Voronov, S. (2008). Formation of Polymer Nanolayers with Special Properties at Polymer Surfaces. Macromolecular Symposia, 267 (1), 113–117. doi: https://doi.org/10.1002/masy.200850721
  18. Don, T.-M., Hsu, Y.-C., Tai, H.-Y., Fu, E., Cheng, L.-P. (2012). Preparation of bi-continuous macroporous polyamide copolymer membranes for cell culture. Journal of Membrane Science, 415-416, 784–792. doi: https://doi.org/10.1016/j.memsci.2012.05.070
  19. Melnyk, Yu. Ya., Yatsulchak, H. V., Hil, N. V., Suberliak, O. V. (2013). Tonkoplivkovi polimerni kompozyty membrannoho typu z pidvyshchenymy fizyko-mekhanichnymy vlastyvostiamy. Visnyk Natsionalnoho universytetu "Lvivska politekhnika". Khimiya, tekhnolohiya rechovyn ta yikh zastosuvannia, 761, 433–436.
  20. Suberliak, O. V. (1982). Termometrycheskye yssledovanyia blochnoi trekhmernoi polymeryzatsyy kompozytsyi na osnove 2-OEMA. Visnyk Natsionalnoho universytetu "Lvivska politekhnika". Khimiya, tekhnolohiya rechovyn ta yikh zastosuvannia, 163, 41.
  21. Gricenko, O. M., Suberlyak, O. V., Moravs'kiy, V. S., Gayduk, A. V. (2016). Investigation of nickel chemical precipitation kinetics. Eastern-European Journal of Enterprise Technologies, 1 (6 (79)), 26–31. doi: https://doi.org/10.15587/1729-4061.2016.59506
  22. Suberlyak, O., Grytsenko, O., Kochubei, V. (2015). The Role of FeSO4 in the Obtaining of Polyvinylpirrolidone Copolymers. Chemistry & Chemical Technology, 9 (4), 429–434. doi: https://doi.org/10.23939/chcht09.04.429
  23. Suberlyak, O., Skorokhoda, V., Grytsenko, O. (2004). Complex PVP–Men+ – active сatalyst of vinyl monomers polymerization. Materialy polimerowe i ich przetworstwo, 1, 140–145.
  24. Grytsenko, O. (2014). The features of film composite hydrogel materials obtaining technology by centrifugal molding. Vol. II. Technological and design aspects of extrusion and injection moulding of thermoplastic polymer composites and nanocomposites. Kosice.

Downloads

Published

2018-12-12

How to Cite

Grytsenko, O., Pokhmurska, A., Suberliak, S., Kushnirchuk, M., Panas, M., Moravskyi, V., & Kovalchuk, R. (2018). Technological features in obtaining highly effective hydrogel dressings for medical purposes. Eastern-European Journal of Enterprise Technologies, 6(6 (96), 6–13. https://doi.org/10.15587/1729-4061.2018.150690

Issue

Section

Technology organic and inorganic substances