DOI: https://doi.org/10.15587/1729-4061.2018.151686

Electric heaters based on nanomodified paraffin with self­installing heat contact for anti­icing systems of aerospace crafts

Alexander Shchegolkov, Alexander Semenov, Anna Ostrovskaya, Vadym Kovalenko

Abstract


Improved effectiveness of ice protection systems of aerospace crafts can be achieved with the development of more effective heaters. Self-regulating electric heaters based on positive or negative temperature coefficient have achieved the highest demand. Development of heaters with such properties involves various matrixes based on cement, glass frit, asphalt mastic, and polymers. Conductivity in such matrixes is governed by metallic or carbon filler. Carbon nanostructures possess the greatest effectiveness. The synthesis method of carbon nanostructures and composites to which they are introduced, the basic properties of resulting electric heaters are determined. To study the effectiveness of electric heaters, a non-contact method of temperature field measurement was used. CNT were synthesized using the Ni/MgO catalytic system, using the thermal decomposition method. CNT morphology was studied using the field emission electron microscope Hitachi H-800. During the investigation, it was found that for the electric heater based on paraffin modified with CNT, the basic specific power was 800±10 % W/m2 at an ambient temperature of +10 °C. When the temperature was lowered to -40 °C, specific power increased to 1,600±20 % W/m2. Dynamic change of power at different temperatures indicated the presence of a self-regulating effect. Thermal images of the heat contact have revealed that heat radiation stabilizes at 56 °С. The developed heaters can operate at a voltage up to 200 V and possess rational electrophysical and functional parameters, which allow for effective operation in ice protection systems for aircrafts

Keywords


electric heater; carbon nanotubes; self-regulation; heat exchange; paraffin; self-installing heat contact

References


Siesing, L., Frogner, K., Cedell, T., Andersson, M. (2016). Investigation of Thermal Losses in a Soft Magnetic Composite Using Multiphysics Modelling and Coupled Material Properties in an Induction Heating Cell. Journal of Electromagnetic Analysis and Applications, 08 (09), 182–196. doi: https://doi.org/10.4236/jemaa.2016.89018

Zhang, K., Han, B., Yu, X. (2011). Nickel particle based electrical resistance heating cementitious composites. Cold Regions Science and Technology, 69 (1), 64–69. doi: https://doi.org/10.1016/j.coldregions.2011.07.002

Vlasov, V., Volokitin, G., Skripnikova, N., Volokitin, O., Shekhovtsov, V. (2015). Joule heating effects on quartz particle melting in high-temperature silicate melt. IOP Conference Series: Materials Science and Engineering, 93, 012071. doi: https://doi.org/10.1088/1757-899x/93/1/012071

Zhang, Z., Chen, B., Lu, C., Wu, H., Wu, H., Jiang, S., Chai, G. (2017). A novel thermo-mechanical anti-icing/de-icing system using bi-stable laminate composite structures with superhydrophobic surface. Composite Structures, 180, 933–943. doi: https://doi.org/10.1016/j.compstruct.2017.08.068

Chen, L., Zhang, Y., Wu, Q. (2017). Heat transfer optimization and experimental validation of anti-icing component for helicopter rotor. Applied Thermal Engineering, 127, 662–670. doi: https://doi.org/10.1016/j.applthermaleng.2017.07.169

Bowen, C. R., Kim, H. A., Salo, A. I. T. (2014). Active Composites based on Bistable Laminates. Procedia Engineering, 75, 140–144. doi: https://doi.org/10.1016/j.proeng.2013.11.030

Gomis, J., Galao, O., Gomis, V., Zornoza, E., Garcés, P. (2015). Self-heating and deicing conductive cement. Experimental study and modeling. Construction and Building Materials, 75, 442–449. doi: https://doi.org/10.1016/j.conbuildmat.2014.11.042

Jagtap, S., Rane, S., Gosavi, S., Amalnerkar, D. (2011). Study on I–V characteristics of lead free NTC thick film thermistor for self heating application. Microelectronic Engineering, 88 (1), 82–86. doi: https://doi.org/10.1016/j.mee.2010.08.025

Faneca, G., Segura, I., Torrents, J. M., Aguado, A. (2018). Development of conductive cementitious materials using recycled carbon fibres. Cement and Concrete Composites, 92, 135–144. doi: https://doi.org/10.1016/j.cemconcomp.2018.06.009

Arabzadeh, A., Ceylan, H., Kim, S., Sassani, A., Gopalakrishnan, K., Mina, M. (2018). Electrically-conductive asphalt mastic: Temperature dependence and heating efficiency. Materials & Design, 157, 303–313. doi: https://doi.org/10.1016/j.matdes.2018.07.059

Kim, C. H., Kim, M. S., Kim, Y. A., Yang, K. S., Baek, S. J., Lee, Y.-J. et. al. (2015). Electro-conductively deposited carbon fibers for power controllable heating elements. RSC Advances, 5 (34), 26998–27002. doi: https://doi.org/10.1039/c5ra01296a

Chu, K., Park, S.-H. (2016). Electrical heating behavior of flexible carbon nanotube composites with different aspect ratios. Journal of Industrial and Engineering Chemistry, 35, 195–198. doi: https://doi.org/10.1016/j.jiec.2015.12.033

Li, Q., Siddaramaiah, Kim, N. H., Yoo, G.-H., Lee, J. H. (2009). Positive temperature coefficient characteristic and structure of graphite nanofibers reinforced high density polyethylene/carbon black nanocomposites. Composites Part B: Engineering, 40 (3), 218–224. doi: https://doi.org/10.1016/j.compositesb.2008.11.002

Zheming, G., Chunzhong, L., Gengchao, W., Ling, Z., Qilin, C., Xiaohui, L. et. al. (2010). Electrical properties and morphology of highly conductive composites based on polypropylene and hybrid fillers. Journal of Industrial and Engineering Chemistry, 16 (1), 10–14. doi: https://doi.org/10.1016/j.jiec.2010.01.028

Park, E.-S. (2005). Resistivity and Thermal Reproducibility of the Carbon Black and SnO2/Sb Coated Titanium Dioxide Filled Silicone Rubber Heaters. Macromolecular Materials and Engineering, 290 (12), 1213–1219. doi: https://doi.org/10.1002/mame.200500214

Zeng, Y., Lu, G., Wang, H., Du, J., Ying, Z., Liu, C. (2014). Positive temperature coefficient thermistors based on carbon nanotube/polymer composites. Scientific Reports, 4 (1). doi: https://doi.org/10.1038/srep06684

Jiang, H., Wang, H., Liu, G., Su, Z., Wu, J., Liu, J. et. al. (2017). Light-weight, flexible, low-voltage electro-thermal film using graphite nanoplatelets for wearable/smart electronics and deicing devices. Journal of Alloys and Compounds, 699, 1049–1056. doi: https://doi.org/10.1016/j.jallcom.2016.12.435

Khan, U., Kim, T.-H., Lee, K. H., Lee, J.-H., Yoon, H.-J., Bhatia, R. et. al. (2015). Self-powered transparent flexible graphene microheaters. Nano Energy, 17, 356–365. doi: https://doi.org/10.1016/j.nanoen.2015.09.007

Nakano, H., Shimizu, K., Takahashi, S., Kono, A., Ougizawa, T., Horibe, H. (2012). Resistivity–temperature characteristics of filler-dispersed polymer composites. Polymer, 53 (26), 6112–6117. doi: https://doi.org/10.1016/j.polymer.2012.10.046

Kono, A., Shimizu, K., Nakano, H., Goto, Y., Kobayashi, Y., Ougizawa, T., Horibe, H. (2012). Positive-temperature-coefficient effect of electrical resistivity below melting point of poly(vinylidene fluoride) (PVDF) in Ni particle-dispersed PVDF composites. Polymer, 53 (8), 1760–1764. doi: https://doi.org/10.1016/j.polymer.2012.02.048

Shchegolkov, A., Schegolkov, A., Karpus, N., Kovalenko, V., Kotok, V. (2017). Investigation of charge and discharge regimes of nanomodified heat-accumulating materials. Eastern-European Journal of Enterprise Technologies, 3 (12 (87)), 23–29. doi: https://doi.org/10.15587/1729-4061.2017.102888


GOST Style Citations


Investigation of Thermal Losses in a Soft Magnetic Composite Using Multiphysics Modelling and Coupled Material Properties in an Induction Heating Cell / Siesing L., Frogner K., Cedell T., Andersson M. // Journal of Electromagnetic Analysis and Applications. 2016. Vol. 08, Issue 09. P. 182–196. doi: https://doi.org/10.4236/jemaa.2016.89018 

Zhang K., Han B., Yu X. Nickel particle based electrical resistance heating cementitious composites // Cold Regions Science and Technology. 2011. Vol. 69, Issue 1. P. 64–69. doi: https://doi.org/10.1016/j.coldregions.2011.07.002 

Joule heating effects on quartz particle melting in high-temperature silicate melt / Vlasov V., Volokitin G., Skripnikova N., Volokitin O., Shekhovtsov V. // IOP Conference Series: Materials Science and Engineering. 2015. Vol. 93. P. 012071. doi: https://doi.org/10.1088/1757-899x/93/1/012071 

A novel thermo-mechanical anti-icing/de-icing system using bi-stable laminate composite structures with superhydrophobic surface / Zhang Z., Chen B., Lu C., Wu H., Wu H., Jiang S., Chai G. // Composite Structures. 2017. Vol. 180. P. 933–943. doi: https://doi.org/10.1016/j.compstruct.2017.08.068 

Chen L., Zhang Y., Wu Q. Heat transfer optimization and experimental validation of anti-icing component for helicopter rotor // Applied Thermal Engineering. 2017. Vol. 127. P. 662–670. doi: https://doi.org/10.1016/j.applthermaleng.2017.07.169 

Bowen C. R., Kim H. A., Salo A. I. T. Active Composites based on Bistable Laminates // Procedia Engineering. 2014. Vol. 75. P. 140–144. doi: https://doi.org/10.1016/j.proeng.2013.11.030 

Self-heating and deicing conductive cement. Experimental study and modeling / Gomis J., Galao O., Gomis V., Zornoza E., Garcés P. // Construction and Building Materials. 2015. Vol. 75. P. 442–449. doi: https://doi.org/10.1016/j.conbuildmat.2014.11.042 

Study on I–V characteristics of lead free NTC thick film thermistor for self heating application / Jagtap S., Rane S., Gosavi S., Amalnerkar D. // Microelectronic Engineering. 2011. Vol. 88, Issue 1. P. 82–86. doi: https://doi.org/10.1016/j.mee.2010.08.025 

Development of conductive cementitious materials using recycled carbon fibres / Faneca G., Segura I., Torrents J. M., Aguado A. // Cement and Concrete Composites. 2018. Vol. 92. P. 135–144. doi: https://doi.org/10.1016/j.cemconcomp.2018.06.009 

Electrically-conductive asphalt mastic: Temperature dependence and heating efficiency / Arabzadeh A., Ceylan H., Kim S., Sassani A., Gopalakrishnan K., Mina M. // Materials & Design. 2018. Vol. 157. P. 303–313. doi: https://doi.org/10.1016/j.matdes.2018.07.059 

Electro-conductively deposited carbon fibers for power controllable heating elements / Kim C. H., Kim M. S., Kim Y. A., Yang K. S., Baek S. J., Lee Y.-J. et. al. // RSC Advances. 2015. Vol. 5, Issue 34. P. 26998–27002. doi: https://doi.org/10.1039/c5ra01296a 

Chu K., Park S.-H. Electrical heating behavior of flexible carbon nanotube composites with different aspect ratios // Journal of Industrial and Engineering Chemistry. 2016. Vol. 35. P. 195–198. doi: https://doi.org/10.1016/j.jiec.2015.12.033 

Positive temperature coefficient characteristic and structure of graphite nanofibers reinforced high density polyethylene/carbon black nanocomposites / Li Q., Siddaramaiah, Kim N. H., Yoo G.-H., Lee J. H. // Composites Part B: Engineering. 2009. Vol. 40, Issue 3. P. 218–224. doi: https://doi.org/10.1016/j.compositesb.2008.11.002 

Electrical properties and morphology of highly conductive composites based on polypropylene and hybrid fillers / Zheming G., Chunzhong L., Gengchao W., Ling Z., Qilin C., Xiaohui L. et. al. // Journal of Industrial and Engineering Chemistry. 2010. Vol. 16, Issue 1. P. 10–14. doi: https://doi.org/10.1016/j.jiec.2010.01.028 

Park E.-S. Resistivity and Thermal Reproducibility of the Carbon Black and SnO2/Sb Coated Titanium Dioxide Filled Silicone Rubber Heaters // Macromolecular Materials and Engineering. 2005. Vol. 290, Issue 12. P. 1213–1219. doi: https://doi.org/10.1002/mame.200500214 

Positive temperature coefficient thermistors based on carbon nanotube/polymer composites / Zeng Y., Lu G., Wang H., Du J., Ying Z., Liu C. // Scientific Reports. 2014. Vol. 4, Issue 1. doi: https://doi.org/10.1038/srep06684 

Light-weight, flexible, low-voltage electro-thermal film using graphite nanoplatelets for wearable/smart electronics and deicing devices / Jiang H., Wang H., Liu G., Su Z., Wu J., Liu J. et. al. // Journal of Alloys and Compounds. 2017. Vol. 699. P. 1049–1056. doi: https://doi.org/10.1016/j.jallcom.2016.12.435 

Self-powered transparent flexible graphene microheaters / Khan U., Kim T.-H., Lee K. H., Lee J.-H., Yoon H.-J., Bhatia R. et. al. // Nano Energy. 2015. Vol. 17. P. 356–365. doi: https://doi.org/10.1016/j.nanoen.2015.09.007 

Resistivity–temperature characteristics of filler-dispersed polymer composites / Nakano H., Shimizu K., Takahashi S., Kono A., Ougizawa T., Horibe H. // Polymer. 2012. Vol. 53, Issue 26. P. 6112–6117. doi: https://doi.org/10.1016/j.polymer.2012.10.046 

Positive-temperature-coefficient effect of electrical resistivity below melting point of poly(vinylidene fluoride) (PVDF) in Ni particle-dispersed PVDF composites / Kono A., Shimizu K., Nakano H., Goto Y., Kobayashi Y., Ougizawa T., Horibe H. // Polymer. 2012. Vol. 53, Issue 8. P. 1760–1764. doi: https://doi.org/10.1016/j.polymer.2012.02.048 

Investigation of charge and discharge regimes of nanomodified heat-accumulating materials / Shchegolkov A., Schegolkov A., Karpus N., Kovalenko V., Kotok V. // Eastern-European Journal of Enterprise Technologies. 2017. Vol. 3, Issue 12 (87). P. 23–29. doi: https://doi.org/10.15587/1729-4061.2017.102888 







Copyright (c) 2018 Alexander Shchegolkov, Alexander Semenov, Anna Ostrovskaya, Vadym Kovalenko

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN (print) 1729-3774, ISSN (on-line) 1729-4061