X-­ray diagnostics of the structure of near­surface layers of ion­implanted monocrystalline materials

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.151806

Keywords:

strain profile, X-ray diffraction, ion implantation, defects of structure, statistical dynamic theory of X-ray scattering

Abstract

A method for obtaining information on the distribution of the parameters of a crystalline structure in the thickness of a near-surface ion-implanted layer, types and characteristics of radiation defects (size, concentration, etc.) has been developed. The influence of the main diffraction parameters on the rocking curve was established, which made it possible to develop an algorithm for the approximation of the theoretically calculated rocking curves to the experimental ones. It is shown that at small doses of implantation, the value of the extinction coefficient μds influences most significantly on the intensity of the rocking curves outside the additional oscillatory structure, and the value of the static Debye-Waller factor E influences most significantly on the intensity of the last oscillations of the additional oscillatory structure that correspond to the maximum deformation. To characterize a defective system, it is necessary to analyze the diffuse component using a part of the rocking curve, which is located behind an additional oscillatory structure and in which the contribution of the coherent component is minimal. The method is tested in the analysis of boron-implanted iron-yttrium garnet films. The presented approach provides an opportunity to obtain much of information about the structure of the ion-implanted layer, since it uses the statistical dynamic theory of X-ray scattering, which takes into account the defects of the crystalline structure of any type and size. Also, this approach makes it possible to use all the information contained in the rocking curves and to assess the degree of uniqueness of the specified parameters

Author Biographies

Ivan Yaremiy, Vasyl Stefanyk Precarpathian National University Shevchenka str., 57, Ivano-Frankivsk, Ukraine, 76018

Doctor of Physical and Mathematical Sciences, Professor

Department of Materials Science and New Technologies

Sofiya Yaremiy, Ivano-Frankivsk National Medical University Halytska str., 2, Ivano-Frankivsk, Ukraine, 76018

PhD, Assistant

Department of Medical Informatics, Medical and Biological Physics

Mariia Povkh, Vasyl Stefanyk Precarpathian National University Shevchenka str., 57, Ivano-Frankivsk, Ukraine, 76018

Postgraduate student

Department of Materials Science and New Technologies

Olesia Vlasii, Vasyl Stefanyk Precarpathian National University Shevchenka str., 57, Ivano-Frankivsk, Ukraine, 76018

PhD, Associate Professor

Department of Informatics

Vasyl Fedoriv, Joint Research Laboratory of Magnetic Films No. 23 of G. V. Kurdyumov Institute for Metal Physics and Vasyl Stefanyk Precarpathian National University Akademika Vernadskoho blvd., 36, Kyiv, Ukraine, 03142

PhD, Researcher

Anna Luсas, Vasyl Stefanyk Precarpathian National University Shevchenka str., 57, Ivano-Frankivsk, Ukraine, 76018

PhD, Associate Professor

Department of Chemistry of the Environment and Chemical Education

References

  1. Pietsch, U., Holy, V., Baumbach, T. (2004). High-Resolution X-Ray Scattering. From Thin Films to Lateral Nanostructures. New York: Springer, 408. doi: https://doi.org/10.1007/978-1-4757-4050-9
  2. Ion beam applications in surface and bulk modification of insulators (2008). International Atomic Energy Agency. Vienna.
  3. Koval'chuk, M. V., Kon, V. G., Lobanovich, E. F. (1985). Izmerenie malyh deformaciy v tonkih epitaksial'nyh plenkah kremniya metodom fotoelektronnoy emissii, vozbuzhdennoy stoyachey rentgenovskoy volnoy. Fizika tverdogo tela, 27 (11), 3379–3387.
  4. Speriosu, V. S., Wilts, C. H. (1982). Abstract: Comparison of magnetic and crystalline profiles in He+‐implanted Gd,Tm,Ga:YIG. Journal of Applied Physics, 53 (3), 2516–2516. doi: https://doi.org/10.1063/1.330855
  5. Kyutt, R. N., Petrashen, P. V., Sorokin, L. M. (1980). Strain profiles in ion-doped silicon obtained from X-ray rocking curves. Physica Status Solidi (a), 60 (2), 381–389. doi: https://doi.org/10.1002/pssa.2210600207
  6. Speriosu, V. S. (1981). Kinematical x‐ray diffraction in nonuniform crystalline films: Strain and damage distributions in ion‐implanted garnets. Journal of Applied Physics, 52 (10), 6094–6103. doi: https://doi.org/10.1063/1.328549
  7. Vartanyants, I. A., Kovalchuk, M. V. (2001). Theory and applications of x-ray standing waves in real crystals. Reports on Progress in Physics, 64 (9), 1009–1084. doi: https://doi.org/10.1088/0034-4885/64/9/201
  8. Punegov, V. I. (1996). Dlina korrelyacii v statisticheskoy teorii rentgenovskoy difrakcii na odnomerno iskazhennyh kristallah s defektami. I. Model' diskretno-sloistoy struktury. Kristallografiya, 41 (1), 23–30.
  9. Shreeman, P. K., Dunn, K. A., Novak, S. W., Matyi, R. J. (2013). Modified statistical dynamical diffraction theory: analysis of model SiGe heterostructures. Journal of Applied Crystallography, 46 (4), 912–918. doi: https://doi.org/10.1107/s0021889813011308
  10. Molodkin, V. B., Kovalchuk, M. V., Shpak, A. P. et. al. (2009). Diffuse Scattering and the Fundamental Properties of Materials. Momentum Press: New Jersey.
  11. Molodkin, V. B., Olikhovskii, S. I., Kislovskii, E. N., Fodchuk, I. M., Skakunova, E. S., Pervak, E. V., Molodkin, V. V. (2007). Dynamical theory of X-ray diffraction by multilayered structures with microdefects. Physica Status Solidi (a), 204 (8), 2606–2612. doi: https://doi.org/10.1002/pssa.200675686
  12. Lagomarsino, S., Giannini, C., Guagliardi, A., Cedola, A., Scarinci, F., Aruta, C. (2004). An automatic analysis of strain-depth profile in X-ray microdiffraction. Physica B: Condensed Matter, 353 (1-2), 104–110. doi: https://doi.org/10.1016/j.physb.2004.09.065
  13. Liubchenko, O. I. (2017). Modeling of X-ray rocking curves for layers after two-stage ion-implantation. Semiconductor Physics Quantum Electronics and Optoelectronics, 20 (3), 355–361. doi: https://doi.org/10.15407/spqeo20.03.355
  14. Lomov, A., Shcherbachev, K., Chesnokov, Y., Kiselev, D. (2017). The microstructure of Si surface layers after plasma-immersion He+ ion implantation and subsequent thermal annealing. Journal of Applied Crystallography, 50 (2), 539–546. doi: https://doi.org/10.1107/s1600576717003259
  15. Boulle, A., Debelle, A. (2010). Strain-profile determination in ion-implanted single crystals using generalized simulated annealing. Journal of Applied Crystallography, 43 (5), 1046–1052. doi: https://doi.org/10.1107/s0021889810030281
  16. Olikhovskii, S. I., Molodkin, V. B., Skakunova, O. S., Len, E. G., Kyslovskyy, Y. M., Vladimirova, T. P. et. al. (2017). Dynamical X-ray diffraction theory: Characterization of defects and strains in as-grown and ion-implanted garnet structures. Physica Status Solidi (b), 254 (7), 1600689. doi: https://doi.org/10.1002/pssb.201600689
  17. Ostafiychuk, B. K., Fedoriv, V. D., Yaremiy, I. P., Garpul, O. Z., Kurovets, V. V., Yaremiy, I. C. (2011). Implantation of single crystalline iron garnet thin films with He+, B+, and Si+ ions. Physica Status Solidi (a), 208 (9), 2108–2114. doi: https://doi.org/10.1002/pssa.201026749
  18. Ostafijchuk, B. K., Kravets, V. I., Pylypiv, V. M. et. al. (2007). Structural disordering of the near-surface layers of films of an iron-yttrium garnet under action of implantation of ions of an arsenium and annealing. Metallofizika i Noveishie Tekhnologii, 29 (9), 1199–1207.
  19. Fodchuk, I. M., Gutsuliak, I. I., Zaplitnyy, R. A., Yaremiy, I. (2013). The influence of high-dose irradiation by N+ ions on the Y2.95La0.05Fe5O12 crystal structure. Metallofizika i Noveishie Tekhnologii, 35 (7), 993–1004.
  20. Ostafiychuk, B. K., Yaremiy, I. P., Yaremiy, S. I., Fedoriv, V. D., Tomyn, U. O., Umantsiv, M. M. et. al. (2013). Modification of the crystal structure of gadolinium gallium garnet by helium ion irradiation. Crystallography Reports, 58 (7), 1017–1022. doi: https://doi.org/10.1134/s1063774513070122
  21. Yaremiy, I., Yaremiy, S., Fedoriv, V., Vlasii, O., Luсas, A. (2018). Developing and programming the algorithm of refinement of the crystal structure of materials with possible isomorphous substitution. Eastern-European Journal of Enterprise Technologies, 5 (5 (95)), 61–67. doi: https://doi.org/10.15587/1729-4061.2018.142752
  22. Ostafijchuk, B. K., Fedoriv, V. D., Yaremiy, S. I. et. al. (2008). Mechanisms of a defect formation at implantation of single crystals of a gadolinium-gallium garnet by B+ and He+ ions. Metallofizika i Noveishie Tekhnologii, 30 (9), 1215–1227.
  23. Fodchuk, I. M., Dovganiuk, V. V., Gutsuliak, I. I. et. al. (2013). X-Ray diffractometry of lanthanum-doped iron-Yttrium garnet structures after ion implantation. Metallofizika i Noveishie Tekhnologii, 35 (9), 1209–1222.

Downloads

Published

2018-12-19

How to Cite

Yaremiy, I., Yaremiy, S., Povkh, M., Vlasii, O., Fedoriv, V., & Luсas A. (2018). X-­ray diagnostics of the structure of near­surface layers of ion­implanted monocrystalline materials. Eastern-European Journal of Enterprise Technologies, 6(12 (96), 50–57. https://doi.org/10.15587/1729-4061.2018.151806

Issue

Section

Materials Science