DOI: https://doi.org/10.15587/1729-4061.2019.153762

The influence of the pack decarburizing process with Pinctada maxima shell powder agent on the properties of high carbon steel

Sujita Darmo, Rudy Soenoko, Eko Siswanto, Teguh Dwi Widodo

Abstract


In the present study, ductility enhancement of high carbon steel AISI 420 was conducted by pack decarburizing method to improve mechanical properties of this steel. This specimen was placed in a rectangular box containing pinctada maxima shell powder (PMSP) mixed with the carburizing agent with different percentage variations and heat treated in an oxygen atmosphere at different temperatures and soaking times. Phase analysis results indicated that the pack decarburizing process at a temperature of 900 °C, for soaking time 3 hours and an additional 30 % PMSP in the carburizing agent causing the martensit microstructure, the surface hardness number and thickness of carbon layer decreased but the impact energy of high carbon steel AISI 420 increased. The surface hardness number, carbon layer thickness each respectively decreased by 63 % and 60 %, but impact energy or impact strength increased by 33 %. This phenomenon indicates that the pack decarburizing treatment causes carbon diffusion from the surface of the specimens to the carburizing agent or reverse carbon diffusion occurs, because the concentration of carbon in the carburizing agent is higher than the surface of the specimen. The addition of PMSP in the carburizing agent increases the occurrence of carbon diffusion from the surface of specimens to the carburizing agent or reverse carbon diffusion occurs, because differences in concentration and influence of PMSP contains elements of Ca which function as catalysts or energizers. The results showthat the pack decarburizing process with an additional PMSP in the carburizing agent accelerates the diffusion of carbon atoms out the surface of the specimens (reverse carbon diffusion process), thus decreasing the thickness of the surface carbon layer, surface hardness number and increasing the impact energy


Keywords


steel AISI 420; Pinctada maxima shell powder; pack decarburizing; diffusion process; surface hardness number; carbon layer thickness; impact energy

Full Text:

PDF

References


AISI 420 High-Carbon steel Din X20Cr13 W-Nr. 1.4021 JIS SUS420JI Sheet Plate. Available at: http://www.otaisteel.com/aisi-420-high-carbon-steel-din-x20cr13-w-nr-1-4021-jis-sus420ji-sheet-plate/

Johansson, B., Nordberg, H., Thullen, J. M. Properties of High Strength Steels. International Compressor Engineering Conference. Paper 474. Available at: https://docs.lib.purdue.edu/icec/474/

Stainless Steel: Tables of Technical Properties. Available at: http://www.worldstainless.org/Files/issf/non-image-files/PDF/Euro_Inox/Tables_TechnicalProperties_EN.pdf

Properties and Applications of Materials. Available at: https://nptel.ac.in/courses/113106032/16

García Molleja, J., Milanese, M., Piccoli, M., Moroso, R., Niedbalski, J., Nosei, L. et. al. (2013). Stability of expanded austenite, generated by ion carburizing and ion nitriding of AISI 316L SS, under high temperature and high energy pulsed ion beam irradiation. Surface and Coatings Technology, 218, 142–151. doi: https://doi.org/10.1016/j.surfcoat.2012.12.043

Wei, Y., Zurecki, Z., Sisson, R. D. (2015). Optimization of processing conditions in plasma activated nitrogen–hydrocarbon carburizing. Surface and Coatings Technology, 272, 190–197. doi: https://doi.org/10.1016/j.surfcoat.2015.04.006

Morita, T., Hirano, Y., Asakura, K., Kumakiri, T., Ikenaga, M., Kagaya, C. (2012). Effects of plasma carburizing and DLC coating on friction-wear characteristics, mechanical properties and fatigue strength of stainless steel. Materials Science and Engineering: A, 558, 349–355. doi: https://doi.org/10.1016/j.msea.2012.08.011

Ren, F. Z., Ren, J. Z., Wei, S. Z., Volinsky, A. A., Wang, Y. F. (2014). Oxidation and decarburisation of high-carbon-chromium steel under charcoal protection during spheroidising. International Heat Treatment and Surface Engineering, 8 (2), 76–79. doi: https://doi.org/10.1179/1749514814z.000000000103

Chen, Z., Zhou, T., Zhao, R., Zhang, H., Lu, S., Yang, W., Zhou, H. (2015). Improved fatigue wear resistance of gray cast iron by localized laser carburizing. Materials Science and Engineering: A, 644, 1–9. doi: https://doi.org/10.1016/j.msea.2015.07.046

Oldani, C. R. (1996). Decarburization and grain growth kinetics during the annealing of electrical steels. Scripta Materialia, 35 (11), 1253–1257. doi: https://doi.org/10.1016/1359-6462(96)00309-0

Ren, F. Z., Ren, J. Z., Wei, S. Z., Volinsky, A. A., Wang, Y. F. (2014). Oxidation and decarburisation of high-carbon-chromium steel under charcoal protection during spheroidising. International Heat Treatment and Surface Engineering, 8 (2), 76–79. doi: https://doi.org/10.1179/1749514814z.000000000103

Zhao, F., Zhang, C. L., Liu, Y. Z. (2016). Ferrite Decarburization of High Silicon Spring Steel in Three Temperature Ranges. Archives of Metallurgy and Materials, 61 (3), 1715–1722. doi: https://doi.org/10.1515/amm-2016-0252

Shibe, V., Chawla, V. (2014). A Review of Surface Modification Techniques in Enhancing the Erosion Resistance of Engineering Components. IJRMET, 4 (2), 92–95.

Vander Voort, G. F. (2015). Understanding the forces behind decarburization is the first step toward minimizing its detrimental effects. Advanced Materials & Processes, 22–27. Available at: https://www.asminternational.org/c/portal/pdf/download?articleId=23559195&groupId=10192

Farre, B., Brunelle, A., Laprévote, O., Cuif, J.-P., Williams, C. T., Dauphin, Y. (2011). Shell layers of the black-lip pearl oyster Pinctada margaritifera: Matching microstructure and composition. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 159 (3), 131–139. doi: https://doi.org/10.1016/j.cbpb.2011.03.001


GOST Style Citations


AISI 420 High-Carbon steel Din X20Cr13 W-Nr. 1.4021 JIS SUS420JI Sheet Plate. URL: http://www.otaisteel.com/aisi-420-high-carbon-steel-din-x20cr13-w-nr-1-4021-jis-sus420ji-sheet-plate/

Johansson B., Nordberg H., Thullen J. M. Properties of High Strength Steels // International Compressor Engineering Conference. Paper 474. URL: https://docs.lib.purdue.edu/icec/474/

Stainless Steel: Tables of Technical Properties. URL: http://www.worldstainless.org/Files/issf/non-image-files/PDF/Euro_Inox/Tables_TechnicalProperties_EN.pdf

Properties and Applications of Materials. URL: https://nptel.ac.in/courses/113106032/16

Stability of expanded austenite, generated by ion carburizing and ion nitriding of AISI 316L SS, under high temperature and high energy pulsed ion beam irradiation / García Molleja J., Milanese M., Piccoli M., Moroso R., Niedbalski J., Nosei L. et. al. // Surface and Coatings Technology. 2013. Vol. 218. P. 142–151. doi: https://doi.org/10.1016/j.surfcoat.2012.12.043 

Wei Y., Zurecki Z., Sisson R. D. Optimization of processing conditions in plasma activated nitrogen-hydrocarbon carburizing // Surface and Coatings Technology. 2015. Vol. 272. P. 190–197. doi: https://doi.org/10.1016/j.surfcoat.2015.04.006 

Effects of plasma carburizing and DLC coating on friction-wear characteristics, mechanical properties and fatigue strength of stainless steel / Morita T., Hirano Y., Asakura K., Kumakiri T., Ikenaga M., Kagaya C. // Materials Science and Engineering: A. 2012. Vol. 558. P. 349–355. doi: https://doi.org/10.1016/j.msea.2012.08.011 

Oxidation and decarburisation of high-carbon-chromium steel under charcoal protection during spheroidising / Ren F. Z., Ren J. Z., Wei S. Z., Volinsky A. A., Wang Y. F. // International Heat Treatment and Surface Engineering. 2014. Vol. 8, Issue 2. P. 76–79. doi: https://doi.org/10.1179/1749514814z.000000000103 

Improved fatigue wear resistance of gray cast iron by localized laser carburizing / Chen Z., Zhou T., Zhao R., Zhang H., Lu S., Yang W., Zhou H. // Materials Science and Engineering: A. 2015. Vol. 644. P. 1–9. doi: https://doi.org/10.1016/j.msea.2015.07.046 

Oldani C. R. Decarburization and grain growth kinetics during the annealing of electrical steels // Scripta Materialia. 1996. Vol. 35, Issue 11. P. 1253–1257. doi: https://doi.org/10.1016/1359-6462(96)00309-0 

Oxidation and decarburisation of high-carbon-chromium steel under charcoal protection during spheroidising / Ren F. Z., Ren J. Z., Wei S. Z., Volinsky A. A., Wang Y. F. // International Heat Treatment and Surface Engineering. 2014. Vol. 8, Issue 2. P. 76–79. doi: https://doi.org/10.1179/1749514814z.000000000103 

Zhao F., Zhang C. L., Liu Y. Z. Ferrite Decarburization of High Silicon Spring Steel in Three Temperature Ranges // Archives of Metallurgy and Materials. 2016. Vol. 61, Issue 3. P. 1715–1722. doi: https://doi.org/10.1515/amm-2016-0252 

Shibe V., Chawla V. A Review of Surface Modification Techniques in Enhancing the Erosion Resistance of Engineering Components // IJRMET. 2014. Vol. 4, Issue 2. P. 92–95.

Vander Voort G. F. Understanding the forces behind decarburization is the first step toward minimizing its detrimental effects // Advanced Materials & Processes. 2015. P. 22–27. URL: https://www.asminternational.org/c/portal/pdf/download?articleId=23559195&groupId=10192

Shell layers of the black-lip pearl oyster Pinctada margaritifera: Matching microstructure and composition / Farre B., Brunelle A., Laprévote O., Cuif J.-P., Williams C. T., Dauphin Y. // Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology. 2011. Vol. 159, Issue 3. P. 131–139. doi: https://doi.org/10.1016/j.cbpb.2011.03.001 







Copyright (c) 2019 Sujita Sujita Darmo, Rudy Rudy Soenoko, Eko Eko Siswanto, Teguh Dwi Widodo

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN (print) 1729-3774, ISSN (on-line) 1729-4061