DOI: https://doi.org/10.15587/1729-4061.2019.155027

Development of the method for rapid detection of hazardous atmospheric pollution of cities with the help of recurrence measures

Boris Pospelov, Evgenіy Rybka, Ruslan Meleshchenko, Pavlo Borodych, Stella Gornostal

Abstract


The method for rapid detection of hazardous pollution of the atmosphere of cities, which is based on dynamic measures of recurrence (repeatability) of the states of the pollution concentration vector, was developed. The new scientific result is related to the use of the unconventional modification of the known measures of recurrence based on the dynamic window averaging the current recurrence of the states of atmospheric pollution concentration. One type of a window has the width that is increasing over actual time of measurements. The other type uses the window of a fixed width that is movable over the time of measurements. The modified measures take into consideration the integrated nature of explicit and hidden destabilizing factors that contribute to current pollution concentration at the point of control. In this case, it is emphasized that there is no need to take into consideration the traditional meteorological or other conditions when identifying hazardous pollution of the atmosphere. The developed method makes it possible to detect rapidly not only explicit, but also hidden dangerous pollutions of the air basin in cities and thus to improve the effectiveness and timeliness of the measures to reduce the harmful effects of pollution of the atmosphere on the population and the environment. Nitrogen dioxide was considered as a hazardous pollutant during the experimental verification of the method. It was established experimentally that the dynamics of the concentration of nitrogen dioxide in the atmosphere of a typical urban configuration has a fractal structure, which depends on the pollution control points. In this case, these structures are characterized by the existence of the elements of periodic and extreme topologies with sharp changes in dynamics. The modified measures were found to characterize the features of specific structures and to detect not only explicit, but also hidden hazards of atmosphere pollution. In this experiment, the dynamics of the modified measures varies from zero to 0.78 units. It was shown that the maximum value of the measures belongs to the interval of observation, which is determined by 12–36 counts. It was established that at the studied control points, current concentrations of nitrogen dioxide exceeded the limit concentrations by 2.75–4.5 times and admissible maximum single concentrations – by 1.3–2.1 times. It was determined that abrupt changes in the dynamics of the modified measures can serve as an indicator of not only explicit, but also hidden hazardous pollution of the atmosphere of cities

Keywords


concentration of air pollution; state of city atmosphere; recurrence measure; recurrent plot

References


Kondratenko, O. M., Vambol, S. O., Strokov, O. P., Avramenko, A. M. (2015). Mathematical model of the efficiency of diesel particulate matter filter. Scientific Bulletin of National Mining University, 6, 55–61.

Vasiliev, M. I., Movchan, I. O., Koval, O. M. (2014). Diminishing of ecological risk via optimization of fire-extinguishing system projects in timber-yards. Scientific Bulletin of National Mining University, 5, 106–113.

Dubinin, D., Korytchenko, K., Lisnyak, A., Hrytsyna, I., Trigub, V. (2017). Numerical simulation of the creation of a fire fighting barrier using an explosion of a combustible charge. Eastern-European Journal of Enterprise Technologies, 6 (10 (90)), 11–16. doi: https://doi.org/10.15587/1729-4061.2017.114504

Semko, A., Rusanova, O., Kazak, O., Beskrovnaya, M., Vinogradov, S., Gricina, I. (2015). The use of pulsed high-speed liquid jet for putting out gas blow-out. The International Journal of Multiphysics, 9 (1), 9–20. doi: https://doi.org/10.1260/1750-9548.9.1.9

Vasyukov, A., Loboichenko, V., Bushtec, S. (2016). Identification of bottled natural waters by using direct conductometry. Ecology, Environment and Conservation, 22 (3), 1171–1176.

Aceves-Fernandez., M. A., Ramos-Arreguín, J. M., Pedraza-Ortega, J. C., Sotomayor-Olmedo., A., Tovar-Arriaga, S. (2012). Finding Trends of Airborne Harmful Pollutants by Using Recurrence Quantification Analysis. American Journal of Environmental Engineering, 1 (1), 10–14. doi: https://doi.org/10.5923/j.ajee.20110101.02

Webber, C. L., Ioana, C., Marwan, N. (Eds.) (2016). Recurrence Plots and Their Quantifications: Expanding Horizons. Springer Proceedings in Physics. doi: https://doi.org/10.1007/978-3-319-29922-8

Pospelov, B., Andronov, V., Rybka, E., Popov, V., Romin, A. (2018). Experimental study of the fluctuations of gas medium parameters as early signs of fire. Eastern-European Journal of Enterprise Technologies, 1 (10 (91)), 50–55. doi: https://doi.org/10.15587/1729-4061.2018.122419

Pospelov, B., Andronov, V., Rybka, E., Popov, V., Semkiv, O. (2018). Development of the method of frequency­temporal representation of fluctuations of gaseous medium parameters at fire. Eastern-European Journal of Enterprise Technologies, 2 (10 (92)), 44–49. doi: https://doi.org/10.15587/1729-4061.2018.125926

Fedotov, V. H., Kol'cov, N. I. (2015). Modeli haoticheskoy dinamiki. Chast' 8. Entropiynye invarianty. Vestnik Kazanskogo tekhnologicheskogo universiteta, 18 (2), 330–335.

Marwan, N. (2011). How to avoid potential pitfalls in recurrence plot based data analysis. International Journal of Bifurcation and Chaos, 21 (4), 1003–1017. doi: https://doi.org/10.1142/s0218127411029008

Pospelov, B., Andronov, V., Rybka, E., Meleshchenko, R., Borodych, P. (2018). Studying the recurrent diagrams of carbon monoxide concentration at early ignitions in premises. Eastern-European Journal of Enterprise Technologies, 3 (9 (93)), 34–40. doi: https://doi.org/10.15587/1729-4061.2018.133127

Abaimov, S. G., Turcotte, D. L., Shcherbakov, R., Rundle, J. B., Yakovlev, G., Goltz, C., Newman, W. I. (2008). Earthquakes: Recurrence and Interoccurrence Times. Earthquakes: Simulations, Sources and Tsunamis, 777–795. doi: https://doi.org/10.1007/978-3-7643-8757-0_20

Pospelov, B., Andronov, V., Rybka, E., Meleshchenko, R., Gornostal, S. (2018). Analysis of correlation dimensionality of the state of a gas medium at early ignition of materials. Eastern-European Journal of Enterprise Technologies, 5 (10 (95)), 25–30. doi: https://doi.org/10.15587/1729-4061.2018.142995

Marwan, N., Kurths, J., Saparin, P. (2007). Generalised recurrence plot analysis for spatial data. Physics Letters A, 360 (4-5), 545–551. doi: https://doi.org/10.1016/j.physleta.2006.08.058

Chen, C.-B., Yang, H., Kumara, S. (2018). Recurrence network modeling and analysis of spatial data. Chaos: An Interdisciplinary Journal of Nonlinear Science, 28 (8), 085714. doi: https://doi.org/10.1063/1.5024917

Marwan, N., Webber, C. L., Macau, E. E. N., Viana, R. L. (2018). Introduction to focus issue: Recurrence quantification analysis for understanding complex systems. Chaos: An Interdisciplinary Journal of Nonlinear Science, 28 (8), 085601. doi: https://doi.org/10.1063/1.5050929


GOST Style Citations


Mathematical model of the efficiency of diesel particulate matter filter / Kondratenko O. M., Vambol S. O., Strokov O. P., Avramenko A. M. // Scientific Bulletin of National Mining University. 2015. Issue 6. P. 55–61.

Vasiliev M. I., Movchan I. O., Koval O. M. Diminishing of ecological risk via optimization of fire-extinguishing system projects in timber-yards // Scientific Bulletin of National Mining University. 2014. Issue 5. P. 106–113.

Numerical simulation of the creation of a fire fighting barrier using an explosion of a combustible charge / Dubinin D., Korytchenko K., Lisnyak A., Hrytsyna I., Trigub V. // Eastern-European Journal of Enterprise Technologies. 2017. Vol. 6, Issue 10 (90). P. 11–16. doi: https://doi.org/10.15587/1729-4061.2017.114504 

The use of pulsed high-speed liquid jet for putting out gas blow-out / Semko A., Rusanova O., Kazak O., Beskrovnaya M., Vinogradov S., Gricina I. // The International Journal of Multiphysics. 2015. Vol. 9, Issue 1. P. 9–20. doi: https://doi.org/10.1260/1750-9548.9.1.9 

Vasyukov A., Loboichenko V., Bushtec S. Identification of bottled natural waters by using direct conductometry // Ecology, Environment and Conservation. 2016. Vol. 22, Issue 3. P. 1171–1176.

Finding Trends of Airborne Harmful Pollutants by Using Recurrence Quantification Analysis / Aceves-Fernandez M. A., Ramos-Arreguín J. M., Pedraza-Ortega J. C., Sotomayor-Olmedo A., Tovar-Arriaga S. // American Journal of Environmental Engineering. 2012. Vol. 1, Issue 1. P. 10–14. doi: https://doi.org/10.5923/j.ajee.20110101.02 

Recurrence Plots and Their Quantifications: Expanding Horizons / C. L. Webber, C. Ioana, N. Marwan (Eds.) // Springer Proceedings in Physics. 2016. doi: https://doi.org/10.1007/978-3-319-29922-8 

Experimental study of the fluctuations of gas medium parameters as early signs of fire / Pospelov B., Andronov V., Rybka E., Popov V., Romin A. // Eastern-European Journal of Enterprise Technologies. 2018. Vol. 1, Issue 10 (91). P. 50–55. doi: https://doi.org/10.15587/1729-4061.2018.122419 

Development of the method of frequency­temporal representation of fluctuations of gaseous medium parameters at fire / Pospelov B., Andronov V., Rybka E., Popov V., Semkiv O. // Eastern-European Journal of Enterprise Technologies. 2018. Vol. 2, Issue 10 (92). P. 44–49. doi: https://doi.org/10.15587/1729-4061.2018.125926 

Fedotov V. H., Kol'cov N. I. Modeli haoticheskoy dinamiki. Chast' 8. Entropiynye invarianty // Vestnik Kazanskogo tekhnologicheskogo universiteta. 2015. Vol. 18, Issue 2. P. 330–335.

Marwan N. How to avoid potential pitfalls in recurrence plot based data analysis // International Journal of Bifurcation and Chaos. 2011. Vol. 21, Issue 4. P. 1003–1017. doi: https://doi.org/10.1142/s0218127411029008 

Studying the recurrent diagrams of carbon monoxide concentration at early ignitions in premises / Pospelov B., Andronov V., Rybka E., Meleshchenko R., Borodych P. // Eastern-European Journal of Enterprise Technologies. 2018. Vol. 3, Issue 9 (93). P. 34–40. doi: https://doi.org/10.15587/1729-4061.2018.133127 

Earthquakes: Recurrence and Interoccurrence Times / Abaimov S. G., Turcotte D. L., Shcherbakov R., Rundle J. B., Yakovlev G., Goltz C., Newman W. I. // Earthquakes: Simulations, Sources and Tsunamis. 2008. P. 777–795. doi: https://doi.org/10.1007/978-3-7643-8757-0_20 

Analysis of correlation dimensionality of the state of a gas medium at early ignition of materials / Pospelov B., Andronov V., Rybka E., Meleshchenko R., Gornostal S. // Eastern-European Journal of Enterprise Technologies. 2018. Vol. 5, Issue 10 (95). P. 25–30. doi: https://doi.org/10.15587/1729-4061.2018.142995 

Marwan N., Kurths J., Saparin P. Generalised recurrence plot analysis for spatial data // Physics Letters A. 2007. Vol. 360, Issue 4-5. P. 545–551. doi: https://doi.org/10.1016/j.physleta.2006.08.058 

Chen C.-B., Yang H., Kumara S. Recurrence network modeling and analysis of spatial data // Chaos: An Interdisciplinary Journal of Nonlinear Science. 2018. Vol. 28, Issue 8. P. 085714. doi: https://doi.org/10.1063/1.5024917 

Introduction to focus issue: Recurrence quantification analysis for understanding complex systems / Marwan N., Webber C. L., Macau E. E. N., Viana R. L. // Chaos: An Interdisciplinary Journal of Nonlinear Science. 2018. Vol. 28, Issue 8. P. 085601. doi: https://doi.org/10.1063/1.5050929 






Copyright (c) 2019 Boris Pospelov, Evgenіy Rybka, Ruslan Meleshchenko, Pavlo Borodych, Stella Gornostal

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN (print) 1729-3774, ISSN (on-line) 1729-4061