Synthesize of the integrative trigeneration system for a «solar house» in the Middle East region

Authors

DOI:

https://doi.org/10.15587/1729-4061.2019.156129

Keywords:

solar house, photovoltaic station, trigeneration, compressor refrigerating machine, active ventilation

Abstract

This research aims to synthesize a trigeneration system for a "solar house" based on an autonomous small solar photovoltaic plant, which could meet the year-round private consumers' needs for heat and cold supply.

The climatic data on the Middle East countries, such as Iran, Saudi Arabia, the United Arab Emirates, Turkey, Syria, and Iraq, were used. Day and night air temperatures in different regions of these countries throughout the year and the total daily radiation, which comes onto a horizontal surface area, were determined. The obtained results revealed that the entire territory of the Middle East is suitable for the development of solar power supply. Seasonal and daily temperature fluctuations require the year-round use of artificial cold for air conditioning and heating of premises. As a result of the analysis, the generalized circuit solution of the small integrated trigeneration system, based on the photovoltaic solar station, was synthesized. Additional solar collectors with a water heater-accumulator provide hot water supply. Air conditioning and heating are provided by a refrigerating machine. The time of modes change is determined by ambient temperature, which does not correspond to comfortable temperature in particular premises. The temperature mode in premises is maintained by the fresh air flow from the active ventilation system, cooled or heated in heat-exchanger of a machine. To harmonize the operation of all elements of the system, the toolkit for determining thermal loads and temperatures modes on premises and elements of the trigeneration system were developed. The study makes it possible to argue that "solar houses" can solve energy, environmental problems of regions, satisfy the social needs of the population in the Middle East countries

Author Biographies

Larisa Morozyuk, Odessa National Academy of Food Technologies Kanatna str., 112, Оdеssа, Ukraine, 65039

Doctor of Technical Sciences, Professor

Department of Cryogenic Technique

Alla Denysova, Odessa National Polytechnic University Shevchenka ave., 1, Odessa, Ukraine, 65044

Doctor of Technical Sciences, Professor

Department of Thermal Powel Plants and Energy Saving Technologies

Saad Aldin Alhemiri, Odessa National Polytechnic University Shevchenka ave., 1, Odessa, Ukraine, 65044

Postgraduate student

Department of Thermal Powel Plants and Energy Saving Technologies

References

  1. Klyuev, P. G. (2010). Solnechnaya energetika: 2014. Available at: http://www.nanometer.ru/2010/08/23/12825909129704_216802.html
  2. Ghafoor, A., Munir, A. (2015). Worldwide overview of solar thermal cooling technologies. Renewable and Sustainable Energy Reviews, 43, 763–774. doi: https://doi.org/10.1016/j.rser.2014.11.073
  3. Strany OPEK delayut stavku na solnechnuyu generaciyu (2017). Available at: https://eadaily.com/ru/news/2017/04/06/strany-opek-delayut-stavku-na-solnechnuyu-generaciyu
  4. Amerhanov, R. A., Draganov, B. H. (2006). Teplotekhnika. Moscow, 432.
  5. Proektirovanie solnechnogo doma. Available at: http://www.mensh.ru/articles/proektirovanie-solnechnogo-doma
  6. Lazzarin, R. M. (2014). Solar cooling: PV or thermal? A thermodynamic and economical analysis. International Journal of Refrigeration, 39, 38–47. doi: https://doi.org/10.1016/j.ijrefrig.2013.05.012
  7. Princip raboty avtonomnoy fotoelektricheskoy stancii. Available at: http://www.vorobiov.com/archive/domikpro/detail-printsip-raboty-avtonomnoy-fotoelektricheskoy-stantsii.html
  8. Xu, Y., Li, M., Luo, X., Ma, X., Wang, Y., Li, G., Hassanien, R. H. E. (2018). Experimental investigation of solar photovoltaic operated ice thermal storage air-conditioning system. International Journal of Refrigeration, 86, 258–272. doi: https://doi.org/10.1016/j.ijrefrig.2017.11.035
  9. Infante Ferreira, C., Kim, D.-S. (2014). Techno-economic review of solar cooling technologies based on location-specific data. International Journal of Refrigeration, 39, 23–37. doi: https://doi.org/10.1016/j.ijrefrig.2013.09.033
  10. Opoku, R., Anane, S., Edwin, I. A., Adaramola, M. S., Seidu, R. (2016). Comparative techno-economic assessment of a converted DC refrigerator and a conventional AC refrigerator both powered by solar PV. International Journal of Refrigeration, 72, 1–11. doi: https://doi.org/10.1016/j.ijrefrig.2016.08.014
  11. Energy Resources. Available at: https://www.nrcan.gc.ca/energy/resources
  12. Nastennye split-sistemy Mitsubishi Electric MSZ-FH25VE / MUZ-FH25VEHZ Inverter. Available at: https://tdkomfort.ru/shop/nastennye_split_sistemy_mitsubishi_electric_msz_fh25ve_muz_fh25ve_inverter.html
  13. Denysova, A., Morozyuk, L., Alhemiri Saad, A., Tsurkan, A. (2018). Schemes, design and technological features of trigeneration systems for the conditions of the Middle East. Bulletin of the National Technical University "KhPI". Series: Innovation researches in students’ scientific work, 40, 10–16. doi: https://doi.org/10.20998/2220-4784.2018.40.02
  14. Bezrodnyi, M. K., Prytula, N. O. (2012). Enerhetychna efektyvnist teplonasosnykh skhem teplopostachannia. Kyiv: NTUU «KPI», 208.
  15. Mazurenko, A. S., Klymchuk, O. A., Shramenko, O. M., Sychova, O. A. (2014). Comparative analysis of decentralized heating systems of residential buildings with the use of electricity. Eastern-European Journal of Enterprise Technologies, 5 (8 (71)), 21–25. doi: https://doi.org/10.15587/1729-4061.2014.28012
  16. Story, A. F., Kolodyazhniy, V. V. (2014). Raschet i proektirovanie sistem ventilyacii i kondicionirovniya vozduha. Kyiv: Izdatel'stvo «Feniks», 343.
  17. Morozyuk, T. V. (2006). Teoriya holodil'nyh mashin i teplovyh nasosov. Odessa: Studiya «Negociant», 712.

Downloads

Published

2019-02-13

How to Cite

Morozyuk, L., Denysova, A., & Alhemiri, S. A. (2019). Synthesize of the integrative trigeneration system for a «solar house» in the Middle East region. Eastern-European Journal of Enterprise Technologies, 1(8 (97), 43–50. https://doi.org/10.15587/1729-4061.2019.156129

Issue

Section

Energy-saving technologies and equipment