DOI: https://doi.org/10.15587/1729-4061.2019.157212

Features of formation of microwave GaAs structures on homo and hetero-transitions for the sub-microconnection of the lsic structures

Stepan Novosiadlyi, Volodymyr Gryga, Bogdan Dzundza, Sviatoslav Novosiadlyi, Volodymyr Mandzyuk, Halyna Klym, Omelian Poplavskyi

Abstract


The features of the formation of microwave GaAs structures are considered and a set of studies is carried out to create a serial technology of large-scale integrated circuit structures (LSIC), including the number of microwaves on GaAs epitaxial layers deposited on monosilicon substrates.

The conditions for the formation of a two-dimensional electron gas in hetero-structures with the determination of electron mobility depending on the orientation of the surface were investigated. For hetero-structures on the surface of a semi-insulated GaAs substrate rotated from the plane (100) at an angle of 6–10º with oxygen content on the initial surface С0=10–50 % relative to the gallium peak of the Auger spectrum, a strong mobility anisotropy was found due to an increase in the angle of reorientation and incomplete annealing of carbon from the initial surface of the GaAs substrate.

For the deposited layers of gallium arsenide on monosilicon substrates epitaxial technology is used, which can significantly improve the purity of the obtained material, namely, significantly reduce the level of oxygen and carbon isoconcentration impurities, which strongly affect the charge state of the interface.

For the formation of structural layers on GaAs, the technology for the formation of nitride layers of Si3N4, AlN, BN by the magnetron method at low substrate temperatures and a given stoichiometry was developed and investigated. The combination of gallium epitaxial nano-silicon arsenide technology to silicon substrates became realistically possible only with the development of technology of magnetron precipitated buffer layers of germanium.

The technology of the formation of logical elements NOT, OR-NOT, AND-NOT of high speed with low threshold voltage is developed, which allows to build high-speed chips of combination and sequential types on complementary structures

Keywords


complementary structures; low-temperature epitaxy; integrated circuits; buffer layer; magnetron deposition

References


Hezel, R. (2013). Silicon Nitride in Microelectronics and Solar Cells. Springer Science & Business Media, 401.

Edwards, P. (2012). Manufacturing Technology in the Electronics Industry: An introduction. Springer Science & Business Media, 248.

Colinge, J. P., Colinge, C. A. (2007). Physics of Semiconductor Devices. Springer Science & Business Media, 436.

Salazar, K., Marci, K. (2012). Mineral commodity summaries. U.S. Geological Survey, Reston, Virginia, 58–60.

Naumov, A. V. (2005). Obzor mirovogo rynka arsenida galliya. Tekhnologiya i konstruirovanie v elektronnoy apparature, 6, 53–57.

Kameineni, V. K., Raymond, M., Bersch, E. J., Doris, B. B. (2010). GaAs structures with a gate dielectric based on aluminum-oxide layers. J. of Appl. Phys., 107, 093525.

Yoshida, T., Hashizume, T. (2012). Insulated gate and surface passivation structures for GaN-based power transistors. Appl. Phys. Lett., 101, 102.

Ossi, P. M., Miotello, A. (2007). Control of cluster synthesis in nano-glassy carbon films. Journal of Non-Crystalline Solids, 353 (18-21), 1860–1864. doi: https://doi.org/10.1016/j.jnoncrysol.2007.02.016

Merkulov, A. I., Merkulov, V. A. (2013). Osnovy konstruirovaniya integral'nyh mikroskhem. Samara: SGAU, 242.

Pizzini, S. (2015). Physical Chemistry of Semiconductor Materials and Processes. John Wiley & Sons. doi: https://doi.org/10.1002/9781118514610

Kogut, I. T., Holota, V. I., Druzhinin, A., Dovhij, V. V. (2016). The Device-Technological Simulation of Local 3D SOI-Structures. Journal of Nano Research, 39, 228–234. doi: https://doi.org/10.4028/www.scientific.net/jnanor.39.228

Druzhinin, A., Ostrovskii, I., Khoverko, Y., Rogacki, K., Kogut, I., Golota, V. (2018). Nanoscale polysilicon in sensors of physical values at cryogenic temperatures. Journal of Materials Science: Materials in Electronics, 29 (10), 8364–8370. doi: https://doi.org/10.1007/s10854-018-8847-0

Novosiadlyi, S., Kotyk, M., Dzundza, B., Gryga, V., Novosiadlyi, S., Mandzyuk, V. (2018). Development of technology of superconducting multilevel wiring in speed GaAs structures of LSI/VLSI. Eastern-European Journal of Enterprise Technologies, 1 (5 (91)), 53–62. doi: https://doi.org/10.15587/1729-4061.2018.123143

Saliy, Y. P., Dzundza, B. S., Bylina, I. S., Kostyuk, O. B. (2016). The influence of the technological factors of obtaining on the surface morphology and electrical properties of the PbTe films doped Bi. Journal of Nano- and Electronic Physics, 8 (2), 02045-1–02045-6. doi: https://doi.org/10.21272/jnep.8(2).02045

Novosiadlyi, S. P., Mandzyuk, V. І., Humeniuk, N. T., Huk, І. Z. (2018). Peculiarities of Forming of Microwave Arsenide-Gallium Submicron Structures of Large-scale Integrated Circuit. Physics and Chemistry of Solid State, 19 (2), 186–190. doi: https://doi.org/10.15330/pcss.19.2.186-190

Novosiadlyi, S. P. (2010). Sub- i nanomikronna tekhnolohiya struktur VIS. Ivano-Frankivsk: Misto NV, 455.

Novosiadlyi, S. P., Melnyk, L. V., Varvaruk, V. M., Kindrat, T. P. (2012). Method for formation of arsenide-gallium hetero-epitaxial structures for submicron shf-large integrated circuits: Pat. No. 77223 UA. No. u201206974; declareted: 07.06.2012; published: 11.02.2013, Bul. No. 3.


GOST Style Citations


Hezel R. Silicon Nitride in Microelectronics and Solar Cells. Springer Science & Business Media, 2013. 401 p.

Edwards P. Manufacturing Technology in the Electronics Industry: An introduction. Springer Science & Business Media, 2012. 248 p.

Colinge J. P., Colinge C. A. Physics of Semiconductor Devices. Springer Science & Business Media, 2007. 436 р.

Salazar K., Marci K. Mineral commodity summaries. U.S. Geological Survey, Reston, Virginia, 2012. P. 58–60.

Naumov A. V. Obzor mirovogo rynka arsenida galliya // Tekhnologiya i konstruirovanie v elektronnoy apparature. 2005. Vol. 6. P. 53–57.

GaAs structures with a gate dielectric based on aluminum-oxide layers / Kameineni V. K., Raymond M., Bersch E. J., Doris B. B. // J. of Appl. Phys. 2010. Issue 107. P. 093525.

Yoshida T., Hashizume T. Insulated gate and surface passivation structures for GaN-based power transistors // Appl. Phys. Lett. 2012. Issue 101. P. 102.

Ossi P. M., Miotello A. Control of cluster synthesis in nano-glassy carbon films // Journal of Non-Crystalline Solids. 2007. Vol. 353, Issue 18-21. P. 1860–1864. doi: https://doi.org/10.1016/j.jnoncrysol.2007.02.016 

Merkulov A. I., Merkulov V. A. Osnovy konstruirovaniya integral'nyh mikroskhem. Samara: SGAU, 2013. 242 p.

Pizzini S. Physical Chemistry of Semiconductor Materials and Processes. John Wiley & Sons, 2015. doi: https://doi.org/10.1002/9781118514610 

The Device-Technological Simulation of Local 3D SOI-Structures / Kogut I. T., Holota V. I., Druzhinin A., Dovhij V. V. // Journal of Nano Research. 2016. Vol. 39. P. 228–234. doi: https://doi.org/10.4028/www.scientific.net/jnanor.39.228 

Nanoscale polysilicon in sensors of physical values at cryogenic temperatures / Druzhinin A., Ostrovskii I., Khoverko Y., Rogacki K., Kogut I., Golota V. // Journal of Materials Science: Materials in Electronics. 2018. Vol. 29, Issue 10. P. 8364–8370. doi: https://doi.org/10.1007/s10854-018-8847-0 

Development of technology of superconducting multilevel wiring in speed GaAs structures of LSI/VLSI / Novosiadlyi S., Kotyk M., Dzundza B., Gryga V., Novosiadlyi S., Mandzyuk V. // Eastern-European Journal of Enterprise Technologies. 2018. Vol. 1, Issue 5 (91). P. 53–62. doi: https://doi.org/10.15587/1729-4061.2018.123143 

The influence of the technological factors of obtaining on the surface morphology and electrical properties of the PbTe films doped Bi / Saliy Y. P., Dzundza B. S., Bylina I. S., Kostyuk O. B. // Journal of Nano- and Electronic Physics. 2016. Vol. 8, Issue 2. P. 02045-1–02045-6. doi: https://doi.org/10.21272/jnep.8(2).02045 

Peculiarities of Forming of Microwave Arsenide-Gallium Submicron Structures of Large-scale Integrated Circuit / Novosiadlyi S. P., Mandzyuk V. І., Humeniuk N. T., Huk І. Z. // Physics and Chemistry of Solid State. 2018. Vol. 19, Issue 2. P. 186–190. doi: https://doi.org/10.15330/pcss.19.2.186-190 

Novosiadlyi S. P. Sub- i nanomikronna tekhnolohiya struktur VIS. Ivano-Frankivsk: Misto NV, 2010. 455 p.

Method for formation of arsenide-gallium hetero-epitaxial structures for submicron shf-large integrated circuits: Pat. No. 77223 UA / Novosiadlyi S. P., Melnyk L. V., Varvaruk V. M., Kindrat T. P. No. u201206974; declareted: 07.06.2012; published: 11.02.2013, Bul. No. 3. 







Copyright (c) 2019 Stepan Novosiadlyi, Volodymyr Gryga, Bogdan Dzundza, Sviatoslav Novosiadlyi, Volodymyr Mandzyuk, Halyna Klym, Omelian Poplavskyi

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN (print) 1729-3774, ISSN (on-line) 1729-4061