Intensification of the process of dosing bulk concentrated feeds by sieve hopper

Authors

DOI:

https://doi.org/10.15587/1729-4061.2019.161410

Keywords:

hopper, concentrated feed, vibratory sieve, uniformity of dosing, sifting activators, diameter of openings, oscillation amplitude

Abstract

The study addresses the development and substantiation of parameters for the hopper that is installed in the technological process for producing concentrated bulk feeds. The structures of hoppers, the ways of improving productivity and the quality of their operation were analyzed and the prospects for the development of this direction were determined. The effectiveness of dosing was enhanced by the modernization of the sieve hopper with a rarefied discharge of dosed material due to the use of the openings in the form of a five-petal epicycloid.

To determine the rational design and kinematic parameters of the modernized sieve hopper, mathematical modeling of the movement of bulk medium was carried out, conditions of the process were selected and final mathematical expressions were found. In addition to the parameters of the moving hopper in expressions and during the experiments, the properties of bulk feeds were explored. The ranges of variation in the sizes of the holes of the bottom and upper sieves were determined, the amplitude and frequency of their oscillations, which are the important parameters of the process of dosing bulk feed on the proposed hopper.

The modeling results were proved by the conducted experimental research. The dependences of the performance of a sieve hopper on its design and kinematic parameters in its basic and upgraded versions were experimentally established. The adequacy of the developed modeling was proved by admissible discrepancy of the results with the experimental results.

Using these dependences on the condition of maximum effectiveness of dosing, the ranges of variation in the performance of the upgraded hopper, which amounted to 0.75…2.6 t/h were determined. It was established that the use of sieves with activators enhances the performance of the hopper by 15...44.4 %. The adequacy of the developed mathematical modeling was proved by admissible discrepancy of the results and experiments, which did not exceed 5 %.

The result of our research is the devised procedure for studying the sieve-type hoppers, which implies a possibility to explore the impact of shapes and sizes of openings on the effectiveness of dosing bulk feeds

Author Biographies

Alexander Nanka, Kharkiv Petro Vasylenko National Technical University of Agriculture Alchevskih str., 44, Kharkiv, Ukraine, 62001

PhD, Associate Professor, Rector

Department of Technical Systems and Animal Husbandry Technologies

Sergei Kharchenko, Kharkiv Petro Vasylenko National Technical University of Agriculture Alchevskih str., 44, Kharkiv, Ukraine, 62001

Doctor of Technical Sciences, Associate Professor

Department of Technology Systems Optimization named after T. P. Yevsyukova

Volodymyr I. Sementsov, Kharkiv Petro Vasylenko National Technical University of Agriculture Alchevskih str., 44, Kharkiv, Ukraine, 62001

PhD, Associate Professor

Department of Technical Systems and Animal Husbandry Technologies

Vitaliy V. Sementsov, Kharkiv Petro Vasylenko National Technical University of Agriculture Alchevskih str., 44, Kharkiv, Ukraine, 62001

PhD, Associate Professor

Department of Technical Systems and Animal Husbandry Technologies

Magomed Abduev, Kharkiv Petro Vasylenko National Technical University of Agriculture Alchevskih str., 44, Kharkiv, Ukraine, 62001

PhD, Associate Professor

Department of Agricultural Machines

References

  1. Ryadchikov, V. G. (2014). Osnovy pitaniya i kormleniya sel'skohozyaystvennyh zhivotnyh. Krasnodar: KGAU, 616.
  2. Giruckiy, I. I. (2007). Vnedrenie informacionno-upravlyayushchih sistem v sel'skohozyaystvennoe proizvodstvo. Traktory i sel'skohozyaystvennye mashiny, 2, 52–54.
  3. Buryakov, N. P. (2009). Kormlenie vysokoproduktivnogo molochnogo skota. Moscow: Izd-vo «Prospekt», 416.
  4. Bokova, T. I. (2008). Ispol'zovanie biologicheski aktivnyh dobavok v racione zhivotnyh. Kormlenie sel'skohozyaystvennyh zhivotnyh i kormoproizvodstvo, 9, 9–10.
  5. Allaberdin, I. L., Malikova, M. G., Sharifyanov, B. G., Yarmuhametova, Z. M. (2007). Effektivnost' balansirovaniya racionov korov po soderzhaniyu mineral'nyh veshchestv. Dostizheniya nauki i tekhniki APK, 6, 53.
  6. Chekhranova, S. V., Dikusarov, V. G., Struk, V. N., Agapova, O. Yu. (2012). Effektivnost' ispol'zovaniya premiksov v kormlenii doynyh korov. Izvestiya Nizhnevolzhskogo agrouniversitetskogo kompleksa, 28 (4).
  7. Vedishchev, S. M., Kapustin, V. P., Glazkov, Yu. E. et. al. (2015). Mekhanizaciya prigotovleniya kormov. Ch. 2. Tambov: IPC FGBOU VPO "TGTU", 129.
  8. Ovchinnikov, A. A., Zasypkin, Yu. F. (2010). Sorghum oil-cakes effectiveness usage in the rations of cattle young animals. Uchenye zapiski Kazanskoy gosudarstvennoy akademii veterinarnoy mediciny im. N. E. Baumana, 126–132.
  9. Stepuk, L. Ya. (1986). Mekhanizaciya dozirovaniya v kormoprigotovlenii. Minsk: Uradzhay, 152.
  10. Shchedrin, V. T., Vedishchev, S. M. (1998). Mekhanizaciya prigotovleniya kormov. Tambov: Tamb. gos. tekhn. un-t, 140.
  11. Sklyarov, A. I., Korneyko, A. A., Uzhik, V. F. et. al. (2005). Teoriya i konstrukciya adaptivnogo oborudovaniya dlya novotel'nyh korov s telyatami. Moscow: Rossel'hozakademiya, 205.
  12. Vil'dman, E. K., Liyvakant, A. A. (1978). Issledovanie dvizheniya korma v bunkere barabannogo dozatora. Mekhanizaciya i elektrifikaciya socialisticheskogo sel'skogo hozyaystva, 12, 25.
  13. Vil'dman, E. K., Liyvakant, A. A. (1980). Opredelenie celesoobraznoy formy yacheek barabannogo dozatora. Mekhanizaciya i elektrifikaciya socialisticheskogo sel'skogo hozyaystva, 6, 53–54.
  14. Shamsiev, N. (1981). Bunkerniy porcionniy razdatchik kormov dlya svinomatok. Mekhanizaciya zagotovki, prigotovleniya i razdachi kormov, 126–130.
  15. Vedishchev, S. M., Glazkov, A. Yu., Prokhorov, A. V. (2014). The Analysis of Forage Batchers. Vestnik universiteta im. V. I. Vernadskogo, 1 (50), 103–108.
  16. Tishchenko, L., Kharchenko, S., Kharchenko, F., Bredykhin, V., Tsurkan, O. (2016). Identification of a mixture of grain particle velocity through the holes of the vibrating sieves grain separators. Eastern-European Journal of Enterprise Technologies, 2 (7 (90)), 63–69. doi: https://doi.org/10.15587/1729-4061.2016.65920
  17. Tishchenko, L. N., Ol’shanskii, V. P., Ol’shanskii, S. V. (2011). On velocity profiles of an inhomogeneous vibrofluidized grain bed on a shaker. Journal of Engineering Physics and Thermophysics, 84 (3), 509–514. doi: https://doi.org/10.1007/s10891-011-0498-4
  18. Sergeev, N. S., Nikolaev, V. N. (2010). Outflow of loose feeds from bunker of multicomponent vibratory measuring hopper. Dostizheniya nauki i tekhniki APK, 10, 65–67.
  19. Dubrovin, A. (2015). Technological optimum angle control of stationary surface movement and weighing loose feed mixtures in the stream. Naukovyi Visnyk NUBIP Ukrainy, 209 (1), 112–120.
  20. Boyko, I., Rusalev, А., Skorik, А. (2009). Ground of structurally-technological chart of the latticed metering device of friable kontsentrirovannykh forages. Vdoskonalennia tekhnolohiyi ta obladnannia vyrobnytstva produktsiyi tvarynnytstva: Visnyk KhNTUSH im. Petra Vasylenka, 78, 236–242.
  21. Rusalev, A. M. (2007). Rezul'taty eksperimental'nyh issledovaniy processa dozirovaniya kombikormov reshetnym dozatorom. Vdoskonalennia tekhnolohiyi ta obladnannia vyrobnytstva produktsiyi tvarynnytstva: Visnyk KhNTUSH im. Petra Vasylenka, 62, 116–122.
  22. Kharchenko, S. (2015). Modeling the dynamics of the grain mixtures with the screening on cylindrical vibrating sieve separators. ТЕKА. Сommission of motorization and energetics in agriculture, 15 (3), 87–93.
  23. Paolotti, D., Cattuto, C., Marini Bettolo Marconi, U., Puglisi, A. (2003). Dynamical properties of vibrfluidized granular mixtures. Granular Matter, 5 (2), 75–83. doi: https://doi.org/10.1007/s10035-003-0133-y
  24. Pascoe, R. D., Fitzpatrick, R., Garratt, J. R. (2015). Prediction of automated sorter performance utilising a Monte Carlo simulation of feed characteristics. Minerals Engineering, 72, 101–107. doi: https://doi.org/10.1016/j.mineng.2014.12.026
  25. Boac, J. M., Ambrose, R. P. K., Casada, M. E., Maghirang, R. G., Maier, D. E. (2014). Applications of Discrete Element Method in Modeling of Grain Postharvest Operations. Food Engineering Reviews, 6 (4), 128–149. doi: https://doi.org/10.1007/s12393-014-9090-y
  26. Kharchenko, S. O. (2017). Intensification of grain sifting on flat sieves of vibration grain separators. Kharkiv: «Disa+», 220.
  27. Kaliniewicz, Z., Biedulska, J., Jadwisieńczakin, B. (2015). Assessment of cereal seed shape with the use of sphericity factors. Technical Sciences, 18 (4), 237–246.
  28. Cervantes, E., Martín, J. J., Saadaoui, E. (2016). Updated Methods for Seed Shape Analysis. Scientifica, 2016, 1–10. doi: https://doi.org/10.1155/2016/5691825

Downloads

Published

2019-04-02

How to Cite

Nanka, A., Kharchenko, S., Sementsov, V. I., Sementsov, V. V., & Abduev, M. (2019). Intensification of the process of dosing bulk concentrated feeds by sieve hopper. Eastern-European Journal of Enterprise Technologies, 2(1 (98), 14–20. https://doi.org/10.15587/1729-4061.2019.161410

Issue

Section

Engineering technological systems