Intensification of the process of dosing bulk concentrated feeds by sieve hopper
DOI:
https://doi.org/10.15587/1729-4061.2019.161410Keywords:
hopper, concentrated feed, vibratory sieve, uniformity of dosing, sifting activators, diameter of openings, oscillation amplitudeAbstract
The study addresses the development and substantiation of parameters for the hopper that is installed in the technological process for producing concentrated bulk feeds. The structures of hoppers, the ways of improving productivity and the quality of their operation were analyzed and the prospects for the development of this direction were determined. The effectiveness of dosing was enhanced by the modernization of the sieve hopper with a rarefied discharge of dosed material due to the use of the openings in the form of a five-petal epicycloid.
To determine the rational design and kinematic parameters of the modernized sieve hopper, mathematical modeling of the movement of bulk medium was carried out, conditions of the process were selected and final mathematical expressions were found. In addition to the parameters of the moving hopper in expressions and during the experiments, the properties of bulk feeds were explored. The ranges of variation in the sizes of the holes of the bottom and upper sieves were determined, the amplitude and frequency of their oscillations, which are the important parameters of the process of dosing bulk feed on the proposed hopper.
The modeling results were proved by the conducted experimental research. The dependences of the performance of a sieve hopper on its design and kinematic parameters in its basic and upgraded versions were experimentally established. The adequacy of the developed modeling was proved by admissible discrepancy of the results with the experimental results.
Using these dependences on the condition of maximum effectiveness of dosing, the ranges of variation in the performance of the upgraded hopper, which amounted to 0.75…2.6 t/h were determined. It was established that the use of sieves with activators enhances the performance of the hopper by 15...44.4 %. The adequacy of the developed mathematical modeling was proved by admissible discrepancy of the results and experiments, which did not exceed 5 %.
The result of our research is the devised procedure for studying the sieve-type hoppers, which implies a possibility to explore the impact of shapes and sizes of openings on the effectiveness of dosing bulk feedsReferences
- Ryadchikov, V. G. (2014). Osnovy pitaniya i kormleniya sel'skohozyaystvennyh zhivotnyh. Krasnodar: KGAU, 616.
- Giruckiy, I. I. (2007). Vnedrenie informacionno-upravlyayushchih sistem v sel'skohozyaystvennoe proizvodstvo. Traktory i sel'skohozyaystvennye mashiny, 2, 52–54.
- Buryakov, N. P. (2009). Kormlenie vysokoproduktivnogo molochnogo skota. Moscow: Izd-vo «Prospekt», 416.
- Bokova, T. I. (2008). Ispol'zovanie biologicheski aktivnyh dobavok v racione zhivotnyh. Kormlenie sel'skohozyaystvennyh zhivotnyh i kormoproizvodstvo, 9, 9–10.
- Allaberdin, I. L., Malikova, M. G., Sharifyanov, B. G., Yarmuhametova, Z. M. (2007). Effektivnost' balansirovaniya racionov korov po soderzhaniyu mineral'nyh veshchestv. Dostizheniya nauki i tekhniki APK, 6, 53.
- Chekhranova, S. V., Dikusarov, V. G., Struk, V. N., Agapova, O. Yu. (2012). Effektivnost' ispol'zovaniya premiksov v kormlenii doynyh korov. Izvestiya Nizhnevolzhskogo agrouniversitetskogo kompleksa, 28 (4).
- Vedishchev, S. M., Kapustin, V. P., Glazkov, Yu. E. et. al. (2015). Mekhanizaciya prigotovleniya kormov. Ch. 2. Tambov: IPC FGBOU VPO "TGTU", 129.
- Ovchinnikov, A. A., Zasypkin, Yu. F. (2010). Sorghum oil-cakes effectiveness usage in the rations of cattle young animals. Uchenye zapiski Kazanskoy gosudarstvennoy akademii veterinarnoy mediciny im. N. E. Baumana, 126–132.
- Stepuk, L. Ya. (1986). Mekhanizaciya dozirovaniya v kormoprigotovlenii. Minsk: Uradzhay, 152.
- Shchedrin, V. T., Vedishchev, S. M. (1998). Mekhanizaciya prigotovleniya kormov. Tambov: Tamb. gos. tekhn. un-t, 140.
- Sklyarov, A. I., Korneyko, A. A., Uzhik, V. F. et. al. (2005). Teoriya i konstrukciya adaptivnogo oborudovaniya dlya novotel'nyh korov s telyatami. Moscow: Rossel'hozakademiya, 205.
- Vil'dman, E. K., Liyvakant, A. A. (1978). Issledovanie dvizheniya korma v bunkere barabannogo dozatora. Mekhanizaciya i elektrifikaciya socialisticheskogo sel'skogo hozyaystva, 12, 25.
- Vil'dman, E. K., Liyvakant, A. A. (1980). Opredelenie celesoobraznoy formy yacheek barabannogo dozatora. Mekhanizaciya i elektrifikaciya socialisticheskogo sel'skogo hozyaystva, 6, 53–54.
- Shamsiev, N. (1981). Bunkerniy porcionniy razdatchik kormov dlya svinomatok. Mekhanizaciya zagotovki, prigotovleniya i razdachi kormov, 126–130.
- Vedishchev, S. M., Glazkov, A. Yu., Prokhorov, A. V. (2014). The Analysis of Forage Batchers. Vestnik universiteta im. V. I. Vernadskogo, 1 (50), 103–108.
- Tishchenko, L., Kharchenko, S., Kharchenko, F., Bredykhin, V., Tsurkan, O. (2016). Identification of a mixture of grain particle velocity through the holes of the vibrating sieves grain separators. Eastern-European Journal of Enterprise Technologies, 2 (7 (90)), 63–69. doi: https://doi.org/10.15587/1729-4061.2016.65920
- Tishchenko, L. N., Ol’shanskii, V. P., Ol’shanskii, S. V. (2011). On velocity profiles of an inhomogeneous vibrofluidized grain bed on a shaker. Journal of Engineering Physics and Thermophysics, 84 (3), 509–514. doi: https://doi.org/10.1007/s10891-011-0498-4
- Sergeev, N. S., Nikolaev, V. N. (2010). Outflow of loose feeds from bunker of multicomponent vibratory measuring hopper. Dostizheniya nauki i tekhniki APK, 10, 65–67.
- Dubrovin, A. (2015). Technological optimum angle control of stationary surface movement and weighing loose feed mixtures in the stream. Naukovyi Visnyk NUBIP Ukrainy, 209 (1), 112–120.
- Boyko, I., Rusalev, А., Skorik, А. (2009). Ground of structurally-technological chart of the latticed metering device of friable kontsentrirovannykh forages. Vdoskonalennia tekhnolohiyi ta obladnannia vyrobnytstva produktsiyi tvarynnytstva: Visnyk KhNTUSH im. Petra Vasylenka, 78, 236–242.
- Rusalev, A. M. (2007). Rezul'taty eksperimental'nyh issledovaniy processa dozirovaniya kombikormov reshetnym dozatorom. Vdoskonalennia tekhnolohiyi ta obladnannia vyrobnytstva produktsiyi tvarynnytstva: Visnyk KhNTUSH im. Petra Vasylenka, 62, 116–122.
- Kharchenko, S. (2015). Modeling the dynamics of the grain mixtures with the screening on cylindrical vibrating sieve separators. ТЕKА. Сommission of motorization and energetics in agriculture, 15 (3), 87–93.
- Paolotti, D., Cattuto, C., Marini Bettolo Marconi, U., Puglisi, A. (2003). Dynamical properties of vibrfluidized granular mixtures. Granular Matter, 5 (2), 75–83. doi: https://doi.org/10.1007/s10035-003-0133-y
- Pascoe, R. D., Fitzpatrick, R., Garratt, J. R. (2015). Prediction of automated sorter performance utilising a Monte Carlo simulation of feed characteristics. Minerals Engineering, 72, 101–107. doi: https://doi.org/10.1016/j.mineng.2014.12.026
- Boac, J. M., Ambrose, R. P. K., Casada, M. E., Maghirang, R. G., Maier, D. E. (2014). Applications of Discrete Element Method in Modeling of Grain Postharvest Operations. Food Engineering Reviews, 6 (4), 128–149. doi: https://doi.org/10.1007/s12393-014-9090-y
- Kharchenko, S. O. (2017). Intensification of grain sifting on flat sieves of vibration grain separators. Kharkiv: «Disa+», 220.
- Kaliniewicz, Z., Biedulska, J., Jadwisieńczakin, B. (2015). Assessment of cereal seed shape with the use of sphericity factors. Technical Sciences, 18 (4), 237–246.
- Cervantes, E., Martín, J. J., Saadaoui, E. (2016). Updated Methods for Seed Shape Analysis. Scientifica, 2016, 1–10. doi: https://doi.org/10.1155/2016/5691825
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 Alexander Nanka, Sergei Kharchenko, Volodymyr I. Sementsov, Vitaliy V. Sementsov, Magomed Abduev
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.