Determining the influence of parameters for gas-air flows on the thermal process of producing iron ore pellets

Authors

DOI:

https://doi.org/10.15587/1729-4061.2019.163278

Keywords:

conveyor plant, calcination zone, pellet layer, temperature, pressure, gas-air flow control

Abstract

We present the results of the study on changes in temperature of gas-air flows at the outlets from calcination zones and recuperation zones of a conveyor-calcination plant. We determined the influence of these temperatures on other technological zones.

We showed that that the average volume temperatures of gas-air flows from calcination and recuperation zones are the exponential dependences on temperatures of gas-air flows above a layer of pellets in these zones. It was established that an increase in the speed of movement of calcination carts from 0.011 m/s to 0.06 m/s leads to a decrease in the average volume temperature of a heated gas-air flow by 1.7 times. An increase in the height of a pellet layer on calcination carts by 30 percent with constant gas permeability of this layer leads to an exponential decrease in the average volume temperature of a gas-air flow by 2.5 times at the outlet from the calcination and recuperation zones. The average volume temperatures of gas-air flows decrease at the outlet of a pellets layer up to three times at a change in the pressure by 20 % in the calcination zone and at the constant movement speed of calcination carts of 0.049 m/s, the height of a pellets layer of 450 mm and the porosity of a pellets layer of 0.45 m³/m.

We used a mathematical model to analyze a temperature mode of a gas-air flow at the outlet of the pellet calcination zone. The basis of the mathematical model was the relation between the inlets and outlets of technological zones of the plant by equations of gas dynamics and heat exchange and mass transfer.

The study made it possible to develop and present an automated control system for a smoke exhauster for average volume temperatures of gas-air flows at the outlet from the technological zones of calcination and recuperation of the plant. It is possible to use it under industrial conditions.

It improves thermal and gas-dynamic operation of technological zones of a conveyor calcination plant

Author Biographies

Vyacheslav Lobov, Kryvyi Rih National University Vitaliya Matusevycha str., 11, Kryvyi Rih, Ukraine, 50027

PhD, Associate Professor

Department of Automation, Computer Science and Technology

Karina Lobova, Kryvyi Rih National University Vitaliya Matusevycha str., 11, Kryvyi Rih, Ukraine, 50027

Department of Automation, Computer Science and Technology

Oleksandr Mytrofanov, Kryvyi Rih National University Vitaliya Matusevycha str., 11, Kryvyi Rih, Ukraine, 50027

Postgraduate student

Department of Automation, Computer Science and Technology

References

  1. Krivonosov, V. A., Pirmatov, D. S. (2011). Kontrol' temperatury okatyshey v zone sushki obzhigovoy mashiny na osnove nablyudatelya sostoyaniya. Gorniy informacionno-analiticheskiy byulleten', 8, 189–194.
  2. Yur'ev, B. P., Bruk, L. B., Spirin, N. A., Sheshukov, O. Yu., Gol'cev, V. A., Shevchenko, O. I., Metelkin, A. A. (2018). Osnovy teorii processov pri obzhige zhelezorudnyh okatyshey. Nizhniy Tagil: NTI (filial) UrFU, 310.
  3. Markov, A. V. (2014). Primenenie UML-diagramm i setey Petri dlya proektirovaniya PO tekhnologicheskogo processa obzhiga okatyshey. Sb. nauch. tr. NGTU, 3 (77), 99–118.
  4. Abzalov, V. M., Kleyn, V. I., Leushin, V. N., Shavrin, S. V. (2003). Gazodinamika sloya syryh okatyshey na obzhigovoy mashine. Stal', 1, 17–20.
  5. Krivonosov, V. A., Pirmatov, D. S. (2013). Thermal processing mode optimization within an automated control system of technological process of a horizontal-grate machine. Inzhenerniy vestnik Dona, 3.
  6. Mnyh, A. S. (2015). To the question of synthesis thermal model of heat treatment of iron ore pellets. Energosberezhenie. Energetika. Energoaudit, 7, 14–20.
  7. Kopot’, N. N., Vorob’ev, A. B., Goncharov, S. S., Butkarev, A. A., Butkarev, A. P. (2010). Comparison of heating systems in conveyer roasting machines. Steel in Translation, 40 (3), 233–238. doi: https://doi.org/10.3103/s0967091210030095
  8. Lobov, V. Y., Lobova, K. V. (2017). Fuzzy control of the iron ore pellets thermal treatment on a conveying car. Visnyk Pryazovskoho derzhavnoho tekhnichnoho universytetu, 34, 182–191.
  9. Lobov, V., Lobova, K., Koltiar, M. (2015). Investigation of temperature distribution along the height of the layer of pellets on conveyor roasting machine. Metallurgical and Mining Industry, 4, 34–38.
  10. Abzalov, V. M., Gorbachev, V. A., Kleyn, V. I. (2000). Metodika operativnogo opredeleniya koefficienta gazodinamicheskogo soprotivleniya sloya okatyshey. Stal', 12.
  11. Mayzel', G. M., Butkarev, A. A., Butkarev, A. P., Nekrasova, E. V., Doshchicin, N. F. (2000). Opyt razrabotki i promyshlennogo primeneniya matematicheskih modeley dlya upravleniya processom proizvodstva okatyshey na konveyernoy mashine. Gornaya Promyshlennost', 5, 45–47.
  12. Butkarev, A. A. (2011). Improving the control of pellet heat treatment in conveyer roasting machines. Steel in Translation, 41 (5), 395–399. doi: https://doi.org/10.3103/s0967091211050056
  13. Bokovikov, B. A., Bragin, V. V., Malkin, V. M. et. al. (2010). Matematicheskaya model' obzhigovoy konveyernoy mashiny kak instrument dlya optimizacii teplovoy skhemy agregata. Stal', 9, 84–87.
  14. Spirin, N. A., Lavrov, V. V., Rybolovlev, V. Yu. (2014). Matematicheskoe modelirovanie metallurgicheskih processov v ASU TP. Ekaterinburg: OOO «UIPC», 558.
  15. Pirmatov, D. S. (2010). Matematicheskaya model' teplovoy obrabotki okatyshey v obzhigovoy mashine. Sbornik trudov vserossiyskoy konferencii: Novye tekhnologii v nauchnyh issledovaniyah, proektirovanii, upravlenii, proizvodstve NT – 2010. Voronezh, 88–89.
  16. Lobov, V. I., Kotliar, M. O. (2015). Temperature distribution model of the iron ore pellets layer inside the combustion chamber of the belt kiln burning zone. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2, 109–117.
  17. Mnyh, A. S. (2015). Issledovanie segregacii granul po vysote sloya obespechivayushchey isklyuchenie neravnomernoy teplovoy obrabotki okatyshey. Zbіrnik naukovih prac' DDTU, 2 (27), 148–153.
  18. Shvydkii, V. S., Yaroshenko, Y. G., Spirin, N. A., Lavrov, V. V. (2017). Mathematical model of burning process of coal-ore pellets on conveyor machine. Izvestiya Visshikh Uchebnykh Zavedenii. Chernaya Metallurgiya = Izvestiya. Ferrous Metallurgy, 60 (4), 329–335. doi: https://doi.org/10.17073/0368-0797-2017-4-329-335
  19. Barati, M. (2008). Dynamic simulation of pellet induration process in straight-grate system. International Journal of Mineral Processing, 89 (1-4), 30–39. doi: https://doi.org/10.1016/j.minpro.2008.09.008
  20. Krivonosov, V. A., Pirmatov, D. S. (2010). Mathematical model of pellet roast in zones of roast machines for optimization the regime. Vestnik Voronezhskogo gosudarstvennogo tekhnicheskogo universiteta, 5, 128–132.
  21. Panic, B., Janiszewski, K. (2014). Model investigations 3D of gas-powder two phase flow in descending packed bed in metallurgical shaft furnaces. Metalurgija, 53 (3), 331–334.
  22. Dai, C., Lei, Z., Li, Q., Chen, B. (2012). Pressure drop and mass transfer study in structured catalytic packings. Separation and Purification Technology, 98, 78–87. doi: https://doi.org/10.1016/j.seppur.2012.06.035
  23. Liu, H., Jonsson, L. T. I., Olofsson, U., Jönsson, P. G. (2016). A Simulation Study of Particles Generated from Pellet Wear Contacts during a Laboratory Test. ISIJ International, 56 (11), 1910–1919. doi: https://doi.org/10.2355/isijinternational.isijint-2016-328
  24. Yur’ev, B. P., Gol’tsev, V. A. (2017). Change of equivalent layer porosity of pellets along the length of burning conveyor machine. Izvestiya Visshikh Uchebnykh Zavedenii. Chernaya Metallurgiya = Izvestiya. Ferrous Metallurgy, 60 (2), 116–123. doi: https://doi.org/10.17073/0368-0797-2017-2-116-123
  25. Guo, L., Morita, K., Tobita, Y. (2012). Numerical Simulation of Three-Phase Flows With Rich Solid Particles by Coupling Multi-Fluid Model With Discrete Element Method. 2012 20th International Conference on Nuclear Engineering and the ASME 2012 Power Conference. Vol. 4, 371–382. doi: https://doi.org/10.1115/icone20-power2012-54053
  26. Croft, T. N., Cross, M., Slone, A. K., Williams, A. J., Bennett, C. R., Blot, P. et. al. (2009). CFD analysis of an induration cooler on an iron ore grate-kiln pelletising process. Minerals Engineering, 22 (9-10), 859–873. doi: https://doi.org/10.1016/j.mineng.2009.03.011
  27. Pomerleau, D., Desbiens, A., Hodouin, D. (2003). Optimization of a simulated iron-oxide pellets induration furnace. 11th Mediterranean Conference on Control and Automation.
  28. Todd, R. S., Webley, P. A. (2005). Pressure Drop in a Packed Bed under Nonadsorbing and Adsorbing Conditions. Industrial & Engineering Chemistry Research, 44 (18), 7234–7241. doi: https://doi.org/10.1021/ie050378b
  29. Ruban, S. A., Lobov, V. Y. (2008). Rozrobka pryntsypiv keruvannia temperaturnym rezhymom protsesu vypaliuvannia obkotyshiv z vykorystanniam prohnozuiuchykh ANFIS-modelei. Radioelektronika. Informatyka. Upravlinnia, 1, 69–74.
  30. Ksendzovskiy, V. R. (1971). Avtomatizaciya processov proizvodstva okatyshey. Moscow: Metallurgiya, 216.

Downloads

Published

2019-04-09

How to Cite

Lobov, V., Lobova, K., & Mytrofanov, O. (2019). Determining the influence of parameters for gas-air flows on the thermal process of producing iron ore pellets. Eastern-European Journal of Enterprise Technologies, 2(2 (98), 43–54. https://doi.org/10.15587/1729-4061.2019.163278