DOI: https://doi.org/10.15587/1729-4061.2019.164017

A study of the structure and properties of material based on an iron – copper composite powder

Anatoly Minitsky, Ievgen Byba, Nataliya Minitska, Sergey Radchuk

Abstract


The study was conducted on the influence of chemical precipitation of copper on the change in the physical, chemical and technological properties of atomized powder based on iron. The kinetics of the copper deposition process from the solution of copper glycerate and the technological parameters of the deposition process have been established, helping obtain copper plating with adjustable thickness. The study of the physical properties of composite powders has shown that plating changes the shape, size, and morphology of the surface of particles of iron powder. Due to this, there are changes in the technological characteristics of iron powders, in particular their fluidity and bulk density increase. The study of the structure of composite powders has shown a difference in porosity at low pressures after compression, compared with the original iron powder, which is due to the best repositioning of particles at the stage of structural deformation. This allows the compression process to be carried out at lower pressures to obtain satisfactory porosity. Second pressing of briquettes based on composite powders results in a decrease in the total porosity of the material by 6–7 %, which is due to the effect of plastic copper, which is more easily deformed at a pressure of up to 800 MPa. The study of the physical and mechanical properties of composite powders has shown that plating with copper increases bending strength and toughness with hardness. The improvement of properties is due to the dissolution of copper in the iron after sintering and the formation of a solid copper solution in α–Fe. In addition, the introduction of copper by chemical precipitation allows obtaining a material with a uniform distribution of the alloying component throughout the volume of iron, which is confirmed by the results of metallographic analysis and measurement of specific electrical resistance.

There are grounds to argue that it is possible to control the amount of copper in an iron powder with a given thickness of plating by a chemical precipitation method, which helps obtain powdered material with high performance characteristics.


Keywords


plating; chemical precipitation; composite powder; moulding; compaction; sealing; morphology; impact strength; electrical resistance

Full Text:

PDF

References


Kocyuba, A. A., Bychkov, A. S., Nechiporenko, O. Yu., Lavrenko, I. G. (2016). Poroshkovye materialy dlya aviacionnoy i raketno-kosmicheskoy tekhniki. Kyiv: KVIC, 304.

Tan, L., He, G., Liu, F., Li, Y., Jiang, L. (2018). Effects of Temperature and Pressure of Hot Isostatic Pressing on the Grain Structure of Powder Metallurgy Superalloy. Materials, 11 (2), 328. doi: https://doi.org/10.3390/ma11020328

Simchi, A. (2006). Direct laser sintering of metal powders: Mechanism, kinetics and microstructural features. Materials Science and Engineering: A, 428 (1-2), 148–158. doi: https://doi.org/10.1016/j.msea.2006.04.117

Mori, K., Maeno, T., Suganami, T., Sakagami, M. (2014). Hot Semi-punching of Quenchable Steel Sheet. Procedia Engineering, 81, 1762–1767. doi: https://doi.org/10.1016/j.proeng.2014.10.228

Li, Y., La, P., Wei, Y., Lu, Y., Yang, Y. (2011). Effect of Hot Pressing on Microstructure and Mechanical Properties of Bulk Nanocrystalline Fe3Al Materials Containing Manganese Element. Journal of Iron and Steel Research International, 18 (3). 65–71. doi: https://doi.org/10.1016/s1006-706x(11)60039-3

Vinogradov, G. A. (2002). Theory and Practice of Rolling Metal Powders. Powder Metallurgy and Metal Ceramics, 41 (9-10), 517–525. doi: http://doi.org/10.1023/A:1022201410282

Kalkanli, A., Durmaz, T., Kalemtas, A., Arslan, G. (2017). Melt Infiltration Casting of Alumina Silicon Carbide and Boron Carbide Reinforced Aluminum Matrix Composites. Journal of Material Science & Engineering, 06 (04). doi: https://doi.org/10.4172/2169-0022.1000357

James, B. W. (2015). Powder metallurgy methods and applications. Vol. 7. ASM Handbook, 9–19. doi: https://doi.org/10.31399/asm.hb.v07.a0006022

Hlosta, J., Zurovec, D., Jezerska, L., Zegzulka, J., Necas, J. (2016). Effect of particle shape and size on the compressibility and bulk properties of powders in powder metallurgy. International Conference on Metallurgy and Materials METAL 2016. Brno.

Benson, J. M., Snyders, E. (2015). The need for powder characterisation in the additive manufacturing industry and the establishment of a national facility. The South African Journal of Industrial Engineering, 26 (2), 104–114. doi: https://doi.org/10.7166/26-2-951

Yasnickiy, Yu. G., Zhornyak, A. F., Radomysel'skiy, I. D., Popichenko, E. Ya. et. al. (1976). Vliyanie sposobov izgotovleniya i tekhnologicheskih harakteristik zheleznyh poroshkov na ih pressuemost'. Poroshkovaya metallurgiya, 5, 91–96.

Van Laar, J. H. (2016). Spheroidisation of iron powder in a microwave plasma reactor. Journal of the Southern African Institute of Mining and Metallurgy, 116 (10), 941–946. doi: https://doi.org/10.17159/2411-9717/2016/v116n10a8

Gay, D. E. (1996). High performance microencapsulated powders for various P/M applications. The international journal of powder metallurgy, 36 (1), 13–25.

Fedorchenko, I. M., Francevich, I. N., Radomysel'skiy, I. D. (1985). Poroshkovaya metallurgiya. Materialy, tekhnologiya, svoystva, oblasti primeneniya. Kyiv, 624.

Maslyuk, V. A., Panasyuk, O. A., Danninger, H., Lyulko, V. G., Apininska, L. M., Minitsky, A. V. (2004). Origination and investigation of properties of powder magnetic-soft materials, based on the iron powders, clad with metal and non-metal components. Euro PM 2004. Vienna, 4, 577–581.

Minitskyi, A. V. (2014). Rozrobka kompozytsiynykh poroshkovykh materialiv elektrotekhnichnoho pryznachennia. Physics and chemistry of solid state, 15 (4), 818–821.

Lyakishev, N. P. (1997). Diagrammy sostoyaniya dvoynyh metallicheskih sistem. Vol. 2. Moscow: Mashinostroenie, 241.


GOST Style Citations


Poroshkovye materialy dlya aviacionnoy i raketno-kosmicheskoy tekhniki / Kocyuba A. A., Bychkov A. S., Nechiporenko O. Yu., Lavrenko I. G. Kyiv: KVIC, 2016. 304 p.

Effects of Temperature and Pressure of Hot Isostatic Pressing on the Grain Structure of Powder Metallurgy Superalloy / Tan L., He G., Liu F., Li Y., Jiang L. // Materials. 2018. Vol. 11, Issue 2. P. 328. doi: https://doi.org/10.3390/ma11020328 

Simchi A. Direct laser sintering of metal powders: Mechanism, kinetics and microstructural features // Materials Science and Engineering: A. 2006. Vol. 428, Issue 1-2. P. 148–158. doi: https://doi.org/10.1016/j.msea.2006.04.117 

Hot Semi-punching of Quenchable Steel Sheet / Mori K., Maeno T., Suganami T., Sakagami M. // Procedia Engineering. 2014. Vol. 81. P. 1762–1767. doi: https://doi.org/10.1016/j.proeng.2014.10.228 

Effect of Hot Pressing on Microstructure and Mechanical Properties of Bulk Nanocrystalline Fe3Al Materials Containing Manganese Element / Li Y., La P., Wei Y., Lu Y., Yang Y. // Journal of Iron and Steel Research International. 2011. Vol. 18, Issue 3. P. 65–71. doi: https://doi.org/10.1016/s1006-706x(11)60039-3 

Vinogradov G. A. Theory and Practice of Rolling Metal Powders // Powder Metallurgy and Metal Ceramics. 2002. Vol. 41, Issue 9-10. P. 517–525. doi: http://doi.org/10.1023/A:1022201410282

Melt Infiltration Casting of Alumina Silicon Carbide and Boron Carbide Reinforced Aluminum Matrix Composites / Kalkanli A., Durmaz T., Kalemtas A., Arslan G. // Journal of Material Science & Engineering. 2017. Vol. 06, Issue 04. doi: https://doi.org/10.4172/2169-0022.1000357 

James B. W. Powder metallurgy methods and applications. Vol. 7. ASM Handbook, 2015. P. 9–19. doi: https://doi.org/10.31399/asm.hb.v07.a0006022 

Effect of particle shape and size on the compressibility and bulk properties of powders in powder metallurgy / Hlosta J., Zurovec D., Jezerska L., Zegzulka J., Necas J. // International Conference on Metallurgy and Materials METAL 2016. Brno, 2016.

Benson J. M., Snyders E. The need for powder characterisation in the additive manufacturing industry and the establishment of a national facility // The South African Journal of Industrial Engineering. 2015. Vol. 26, Issue 2. P. 104–114. doi: https://doi.org/10.7166/26-2-951 

Vliyanie sposobov izgotovleniya i tekhnologicheskih harakteristik zheleznyh poroshkov na ih pressuemost' / Yasnickiy Yu. G., Zhornyak A. F., Radomysel'skiy I. D., Popichenko E. Ya. et. al. // Poroshkovaya metallurgiya. 1976. Issue 5. P. 91–96.

Van Laar J. H. Spheroidisation of iron powder in a microwave plasma reactor // Journal of the Southern African Institute of Mining and Metallurgy. 2016. Vol. 116, Issue 10. P. 941–946. doi: https://doi.org/10.17159/2411-9717/2016/v116n10a8 

Gay D. E. High performance microencapsulated powders for various P/M applications // The international journal of powder metallurgy. 1996. Vol. 36, Issue 1. P. 13–25.

Fedorchenko I. M., Francevich I. N., Radomysel'skiy I. D. Poroshkovaya metallurgiya. Materialy, tekhnologiya, svoystva, oblasti primeneniya: spravochnik. Kyiv, 1985. 624 p.

Origination and investigation of properties of powder magnetic-soft materials, based on the iron powders, clad with metal and non-metal components / Maslyuk V. A., Panasyuk O. A., Danninger H., Lyulko V. G., Apininska L. M., Minitsky A. V. // Euro PM 2004. Vienna, 2004. Vol. 4. Р. 577–581.

Minitskyi A. V. Rozrobka kompozytsiynykh poroshkovykh materialiv elektrotekhnichnoho pryznachennia // Physics and chemistry of solid state. 2014. Vol. 15, Issue 4. P. 818–821.

Lyakishev N. P. Diagrammy sostoyaniya dvoynyh metallicheskih sistem. Vol. 2: spravochnik. Moscow: Mashinostroenie, 1997. 241 p.






Copyright (c) 2019 Anatoly Minitsky, Ievgen Byba, Nataliya Minitska, Sergey Radchuk

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN (print) 1729-3774, ISSN (on-line) 1729-4061