DOI: https://doi.org/10.15587/1729-4061.2019.164694

Analysis of change in the decorative properties of granites under thermal exposure

Valentyn Korobiichuk, Volodymyr Shlapak, Andrii Kryvoruchko, Ruslan Sobolevskyi, Natalia Zuievska

Abstract


We investigated samples extracted in Ukraine from nine granite deposits experimentally. We performed tests of granite samples at high temperatures of 200, 400, 600, and 900 °C.

All presented granites showed a change in the color of surface at a temperature of 200 °C and higher. The behavior of granites under heating depends on their mineral composition, structure and texture.

Surfaces of all samples became lighter and some granite samples lost saturation of their color. The largest increase in L component (image of stone samples brightens) of the CIELab color system occurred on Cardinal Gray and Carpazi granite samples of natural stone under heating to 900 °C. The increase made up 42 and 44 %, respectively. The smallest increase in L component was on Gray Ukraine and L granites under heating to 900 °C. It made up 4 and 8.5 %, respectively.

The effect of temperature was less visible on red granite, since both fresh and heated samples had a similar red color. Flower of Ukraine granite samples acquired a uniform violet-pink color at the temperature of 900 °C due to the content of apatite and fluorite. Red spots appeared on gray granites under heating. The red spots located mainly around mica and other minerals, which were rich in Fe. Reddish-brown spots appeared at the temperature of 200 °C on green Verde Oliva granite. Red spots occupied 67 % of the sample area under heating to 900 °C.

We observed the greatest color change on granites, where the phase transition of dark-colored minerals (biotite and pyroxene) into polymorphic minerals took place. This gave granite samples a light color, as the minerals changed color from black to gray or white. Quartz provided the shades of white. White microcracks appeared under heating of quartz.

Noticeable aesthetic damage appears at temperatures from 200 to 400 °C at the surfaces of natural stone samples. Thus, one can consider a fire with temperatures lower than this threshold as a “safe” fire in terms of aesthetic damage, if we take into consideration the heating coefficient of fire only and exclude ash and gases.


Keywords


granite; high temperatures; decorativeness of natural stone; mineral composition; granite structure

Full Text:

PDF

References


Korobiichuk, V., Shamrai, V., Levytskyi, V., Sobolevskyi, R., Sydorov, O. (2018). Evaluation of the effectiveness of natural stone surface treatment from Ukraine by mechanical and chemical methods. Rudarsko-geološko-naftni zbornik, 33 (4), 15–21. doi: https://doi.org/10.17794/rgn.2018.4.2

Chakrabarti, B., Yates, T., Lewry, A. (1996). Effect of fire damage on natural stonework in buildings. Construction and Building Materials, 10 (7), 539–544. doi: https://doi.org/10.1016/0950-0618(95)00076-3

Freire-Lista, D. M., Fort, R., Varas-Muriel, M. J. (2015). Freeze–thaw fracturing in building granites. Cold Regions Science and Technology, 113, 40–51. doi: https://doi.org/10.1016/j.coldregions.2015.01.008

Vazquez, P., Acuña, M., Benavente, D., Gibeaux, S., Navarro, I., Gomez-Heras, M. (2016). Evolution of surface properties of ornamental granitoids exposed to high temperatures. Construction and Building Materials, 104, 263–275. doi: https://doi.org/10.1016/j.conbuildmat.2015.12.051

Prieto, B., Sanmartín, P., Silva, B., Martínez-Verdú, F. (2010). Measuring the color of granite rocks: A proposed procedure. Color Research & Application, 35 (5), 368–375. doi: https://doi.org/10.1002/col.20579

Korobiichuk, V., Shlapak, V., Sobolevskyi, R., Sydorov, O., Shaidetska, L. (2019). Change in the physical­mechanical and decorative properties of labradorite under thermal exposure. Eastern-European Journal of Enterprise Technologies, 1 (12 (97)), 14–20. doi: https://doi.org/10.15587/1729-4061.2019.157307

Kılıç, Ö. (2006). The influence of high temperatures on limestone P-wave velocity and Schmidt hammer strength. International Journal of Rock Mechanics and Mining Sciences, 43 (6), 980–986. doi: https://doi.org/10.1016/j.ijrmms.2005.12.013

Korobiichuk, V., Shamrai, V., Iziumova, O., Tolkach, O., Sobolevskyi, R. (2016). Definition of hue of different types of pokostivskiy granodiorite using digital image processing. Eastern-European Journal of Enterprise Technologies, 4 (5 (82)), 52–57. doi: https://doi.org/10.15587/1729-4061.2016.74849

Semenchenko, Yu. V., Agafonova, T. N., Soloninko, I. S., L'vova, T. V., Nazarenko, V. V. (1974). Cvetnye kamni Ukrainy. Kyiv, 186.

Kompaníková, Z., Gomez-Heras, M., Michňová, J., Durmeková, T., Vlčko, J. (2014). Sandstone alterations triggered by fire-related temperatures. Environmental Earth Sciences, 72 (7), 2569–2581. doi: https://doi.org/10.1007/s12665-014-3164-2

Dwivedi, R. D., Goel, R. K., Prasad, V. V. R., Sinha, A. (2008). Thermo-mechanical properties of Indian and other granites. Journal of Rock Mechanics and Mining Sciences, 45 (3), 303–315. doi: https://doi.org/10.1016/j.ijrmms.2007.05.008

De Argandoña, V. G. R., Calleja, L., Montoto, M. (1985). Determinación experimental del umbral de microfisuración térmica de la roca matriz o intact rock. Trabajos de geologia, 15 (15), 299–307.

Gillhuber, S., Lehrberger, G., Göske, J. (2010). Fire damage of trachyte: investigations of the Teplá monastery building stones. Geological Society, London, Special Publications, 333 (1), 73–79. doi: https://doi.org/10.1144/sp333.7

Hajpál, M., Török, A. (2004). Mineralogical and colour changes of quartz sandstones by heat. Environmental Geology, 46 (3-4), 311–322. doi: https://doi.org/10.1007/s00254-004-1034-z

Gómez-Heras, M., Smith, B. J., Fort, R. (2008). Influence of surface heterogeneities of building granite on its thermal response and its potential for the generation of thermoclasty. Environmental Geology, 56 (3-4), 547–560. doi: https://doi.org/10.1007/s00254-008-1356-3

Vázquez, P., Shushakova, V., Gómez-Heras, M. (2015). Influence of mineralogy on granite decay induced by temperature increase: Experimental observations and stress simulation. Engineering Geology, 189, 58–67. doi: https://doi.org/10.1016/j.enggeo.2015.01.026

Hajpál, M. (2006). Thermal Stresses. Fracture and Failure of Natural Building Stones, 439–445. doi: https://doi.org/10.1007/978-1-4020-5077-0_27


GOST Style Citations


Evaluation of the effectiveness of natural stone surface treatment from Ukraine by mechanical and chemical methods / Korobiichuk V., Shamrai V., Levytskyi V., Sobolevskyi R., Sydorov O. // Rudarsko-geološko-naftni zbornik. 2018. Vol. 33, Issue 4. P. 15–21. doi: https://doi.org/10.17794/rgn.2018.4.2 

Chakrabarti B., Yates T., Lewry A. Effect of fire damage on natural stonework in buildings // Construction and Building Materials. 1996. Vol. 10, Issue 7. P. 539–544. doi: https://doi.org/10.1016/0950-0618(95)00076-3 

Freire-Lista D. M., Fort R., Varas-Muriel M. J. Freeze–thaw fracturing in building granites // Cold Regions Science and Technology. 2015. Vol. 113. P. 40–51. doi: https://doi.org/10.1016/j.coldregions.2015.01.008 

Evolution of surface properties of ornamental granitoids exposed to high temperatures / Vazquez P., Acuña M., Benavente D., Gibeaux S., Navarro I., Gomez-Heras M. // Construction and Building Materials. 2016. Vol. 104. P. 263–275. doi: https://doi.org/10.1016/j.conbuildmat.2015.12.051 

Measuring the color of granite rocks: A proposed procedure / Prieto B., Sanmartín P., Silva B., Martínez-Verdú F. // Color Research & Application. 2010. Vol. 35, Issue 5. P. 368–375. doi: https://doi.org/10.1002/col.20579 

Change in the physical­mechanical and decorative properties of labradorite under thermal exposure / Korobiichuk V., Shlapak V., Sobolevskyi R., Sydorov O., Shaidetska L. // Eastern-European Journal of Enterprise Technologies. 2019. Vol. 1, Issue 12 (97). Р. 14–20. doi: https://doi.org/10.15587/1729-4061.2019.157307

Kılıç Ö. The influence of high temperatures on limestone P-wave velocity and Schmidt hammer strength // International Journal of Rock Mechanics and Mining Sciences. 2006. Vol. 43, Issue 6. P. 980–986. doi: https://doi.org/10.1016/j.ijrmms.2005.12.013 

Definition of hue of different types of pokostivskiy granodiorite using digital image processing / Korobiichuk V., Shamrai V., Iziumova O., Tolkach O., Sobolevskyi R. // Eastern-European Journal of Enterprise Technologies. 2016. Vol. 4, Issue 5 (82). P. 52–57. doi: https://doi.org/10.15587/1729-4061.2016.74849 

Cvetnye kamni Ukrainy / Semenchenko Yu. V., Agafonova T. N., Soloninko I. S., L'vova T. V., Nazarenko V. V. Kyiv, 1974. 186 p.

Sandstone alterations triggered by fire-related temperatures / Kompaníková Z., Gomez-Heras M., Michňová J., Durmeková T., Vlčko J. // Environmental Earth Sciences. 2014. Vol. 72, Issue 7. P. 2569–2581. doi: https://doi.org/10.1007/s12665-014-3164-2 

Thermo-mechanical properties of Indian and other granites / Dwivedi R. D., Goel R. K., Prasad V. V. R., Sinha A. // International Journal of Rock Mechanics and Mining Sciences. 2008. Vol. 45, Issue 3. P. 303–315. doi: https://doi.org/10.1016/j.ijrmms.2007.05.008 

De Argandoña V. G. R., Calleja L., Montoto M. Determinación experimental del umbral de microfisuración térmica de la roca matriz o intact rock // Trabajos de geologia. 1985. Vol. 15, Issue 15. P. 299–307.

Gillhuber S., Lehrberger G., Göske J. Fire damage of trachyte: investigations of the Teplá monastery building stones // Geological Society, London, Special Publications. 2010. Vol. 333, Issue 1. P. 73–79. doi: https://doi.org/10.1144/sp333.7 

Hajpál M., Török A. Mineralogical and colour changes of quartz sandstones by heat // Environmental Geology. 2004. Vol. 46, Issue 3-4. P. 311–322. doi: https://doi.org/10.1007/s00254-004-1034-z 

Gómez-Heras M., Smith B. J., Fort R. Influence of surface heterogeneities of building granite on its thermal response and its potential for the generation of thermoclasty // Environmental Geology. 2008. Vol. 56, Issue 3-4. P. 547–560. doi: https://doi.org/10.1007/s00254-008-1356-3 

Vázquez P., Shushakova V., Gómez-Heras M. Influence of mineralogy on granite decay induced by temperature increase: Experimental observations and stress simulation // Engineering Geology. 2015. Vol. 189. P. 58–67. doi: https://doi.org/10.1016/j.enggeo.2015.01.026 

Hajpál M. Thermal Stresses // Fracture and Failure of Natural Building Stones. 2006. P. 439–445. doi: https://doi.org/10.1007/978-1-4020-5077-0_27 






Copyright (c) 2019 Valentyn Korobiichuk, Volodymyr Shlapak, Andrii Kryvoruchko, Ruslan Sobolevskyi, Natalia Zuievska

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN (print) 1729-3774, ISSN (on-line) 1729-4061