Thermodynamic analysis of the scheme­cycle design of a heating­coolingmachinefor an individual house

Authors

DOI:

https://doi.org/10.15587/1729-4061.2019.167101

Keywords:

refrigerating machine, working fluid, thermodynamic analysis, energy efficiency, cycle size.

Abstract

The direction of the research is the thermodynamic analysis of the scheme-cycle designof a heating and cooling machine for an individual house powered by autonomous solar photovoltaic system of providing private consumers with the year-roundheating and cooling in conditions of dry tropical climate.

For the analysis, a single-stage compressor refrigerating machine was used, which operates in two modes: refrigeration forair conditioning and heat pump for heating, covering all rooms in the house. Change of the modes is made seasonally or during the day depending on the ambient temperature. The energy efficiency of the refrigerationcycle(“energy” problem) associated with the properties of the working fluid, and cycle size(“transport”problem) associated with the scheme-cycle design, equipment mass and investment costs,were determined. The study used the working fluids R404a, R134a, R410, R290, R600a, R32, which are neither prohibited nor expired. Calculations were performed separately for each mode. The results showed that the R290, R600a working fluids have a high efficiency in both modes, R404A, R410, R32 have the same energy efficiency, differing by no more than 10%, R134a is incompetitivein the heating mode. Among the cyclesizes, R32, R410 have the advantagewith the valueshalf the size of R290, R404A, R600a and R134a are not included in the alternative group. Based on the thermodynamic analysis and monitoring of the market of working fluids, only R32 can be recommended for real projects. A separate thermodynamic analysis of thescheme-cycle designs for CO2 – the real prospect of refrigeration equipmentwas carried out.

Author Biographies

Larisa Morozyuk, Odessa National Academy of Food Technologies Каnаtnа str., 112, Оdеssа, Ukraine, 65039

Doctor of Technical Sciences, Professor

Department of Cryogenic Technique

Viktoriia Sokolovska-Yefymenko, Odessa National Academy of Food Technologies Каnаtnа str., 112, Оdеssа, Ukraine, 65039

PhD, Associate Professor

Department of Cryogenic Technique

Vera Kandieieva, Odessa National Polytechnic University Shevchenka ave., 1, Odessa, Ukraine, 65044

PhD

Department of Thermal Powel Plants and Energy Saving Technologies

Andrii Moshkatiuk, Odessa National Academy of Food Technologies Каnаtnа str., 112, Оdеssа, Ukraine, 65039

Postgraduate student

Department of Cryogenic Technique

Artem Kukoliev, Odessa National Academy of Food Technologies Каnаtnа str., 112, Оdеssа, Ukraine, 65039

Department of Cryogenic Technique

References

  1. Razvitie mirovoy holodil'noy promyshlennosti. Available at: http://znakka4estva.ru/dokumenty/ekonomika/razvitie-mirovoy-holodilnoy-promyshlennosti/
  2. Angrisani, G., Akisawa, A., Marrasso, E., Roselli, C., Sasso, M. (2016). Performance assessment of cogeneration and trigeneration systems for small scale applications. Energy Conversion and Management, 125, 194–208. doi: https://doi.org/10.1016/j.enconman.2016.03.092
  3. Denysova, А., Alhemiri Saad, A., Morozyuk, L. (2018). Discussion of the possibility of creating trigeneration systems in the climate of the Middle East. Kholodylna tekhnika i tekhnolohiya, 54 (5), 36–43. doi: https://doi.org/10.15673/ret.v54i5.1249
  4. Split/Multi-Split Type Air Conditioners. Available at: https://www.daikin.com/products/ac/lineup/split_multi_split/
  5. York Rooftop Units Heatingand Air Conditioning. Available at: https://www.master.ca/en/professionnal/rooftop-units
  6. Denysova, A., Morozyuk, L., Alhemiri Saad, A., Tsurkan, A. (2018). Schemes, design and technological features of trigeneration systems for the conditions of the Middle East. Bulletin of the National Technical University "KhPI". Series: Innovation researches in students’ scientific work, 40, 10–16. doi: https://doi.org/10.20998/2220-4784.2018.40.02
  7. Klyuev, P. G. Solnechnaya energetika: 2014. Available at: http://www.nanometer.ru/2010/08/23/12825909129704_216802.html
  8. Bellos, E., Tzivanidis, C. (2017). Parametric analysis and optimization of a solar driven trigeneration system based on ORC and absorption heat pump. Journal of Cleaner Production, 161, 493–509. doi: https://doi.org/10.1016/j.jclepro.2017.05.159
  9. Ghafoor, A., Munir, A. (2015). Worldwide overview of solar thermal cooling technologies. Renewable and Sustainable Energy Reviews, 43, 763–774. doi: https://doi.org/10.1016/j.rser.2014.11.073
  10. Medved, D. (2011). Trigeneration units. Intensive Programme “Renewable Energy Sources”, 47–50.
  11. Monreal's'kiy protokol pro rechovini, scho ruynuyut' ozonoviy shar. Available at: https://zakon.rada.gov.ua/laws/show/995_215
  12. Coulomb, D. (2013). The refrigerants future: the phase down of HFCsand its consequences. Nizkotemperaturnye i pischevye tekhnologii v XXI veke: materialy VI MNTK. Sankt-Peterburg. Sankt-Peterburg: NIU ITMO, IHiBT, 3–6.
  13. Zapret hladagenta R134a v Еvrope (2017). Available at: http://www.automaster.net.ua/artykuly/zapret-hladagenta-r134a-v-evrope,49721?wyslij=49721
  14. Regulation (EU) No. 517/2014. Available at: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32014R0517&from=EN
  15. California approves original SNAP rules (2018). Cooling Post. Available at: https://www.coolingpost.com/world-news/california-approves-original-snap-rules/
  16. Environmentally friendly and efficient propane heat pump (2018). Available at: https://phys.org/news/2018-09-environmentally-friendly-efficient-propane-burning.html
  17. Opoku, R., Anane, S., Edwin, I. A., Adaramola, M. S., Seidu, R. (2016). Comparative techno-economic assessment of a converted DC refrigerator and a conventional AC refrigerator both powered by solar PV. International Journal of Refrigeration, 72, 1–11. doi: https://doi.org/10.1016/j.ijrefrig.2016.08.014
  18. Infante Ferreira, C., Kim, D.-S. (2014). Techno-economic review of solar cooling technologies based on location-specific data. International Journal of Refrigeration, 39, 23–37. doi: https://doi.org/10.1016/j.ijrefrig.2013.09.033
  19. Xu, Y., Li, M., Luo, X., Ma, X., Wang, Y., Li, G., Hassanien, R. H. E. (2018). Experimental investigation of solar photovoltaic operated ice thermal storage air-conditioning system. International Journal of Refrigeration, 86, 258–272. doi: https://doi.org/10.1016/j.ijrefrig.2017.11.035
  20. Morozyuk, T. V. (2006). Teoriya holodil'nyh mashin i teplovyh nasosov. Odessa: Studiya «Negociant», 712.
  21. Scroll Compressors. BITZER. Available at: https://www.bitzer.de/gb/en/scroll-compressors/?country=gb
  22. Porshnevye kompressory. BITZER. Available at: https://www.bitzer.de/ru/ru/поршневые-компрессоры/

Downloads

Published

2019-05-14

How to Cite

Morozyuk, L., Sokolovska-Yefymenko, V., Kandieieva, V., Moshkatiuk, A., & Kukoliev, A. (2019). Thermodynamic analysis of the scheme­cycle design of a heating­coolingmachinefor an individual house. Eastern-European Journal of Enterprise Technologies, 3(8 (99), 43–49. https://doi.org/10.15587/1729-4061.2019.167101

Issue

Section

Energy-saving technologies and equipment