DOI: https://doi.org/10.15587/1729-4061.2019.167956

Studying the influence of uv adsorbers on optical characteristics of light-protective polymer films for textile materials

Olga Semeshko, Maria Pasichnyk, Lyudmila Hyrlya, Viktoria Vasylenko, Elena Kucher

Abstract


The use of UV adsorbers included in composition of a polymer film is a promising way of color protecting against effects of light since application of the polymer to the textile material surface is a universal way of providing the textile materials with necessary special properties.

Optical characteristics are the most important indicators of suitability of polymer films for their use in final processing of colored textile materials. The objective of this study consisted in a spectrophotometric determination of optical characteristics of polymer films based on a styrene-acrylic polymer with addition of a cross-linking agent and UV adsorbers for the use in final processing of textile materials for the purpose of their color protection.

The polymer matrix is an aqueous dispersion of a thermally linking styrene-acrylic copolymer. Partly esterified melamine resin was used as a cross-linking agent and 2,4-dihydroxybenzophenone, 3,6-dihydroxyacetophenone, salicylic acid phenyl ether, p-methoxy cinnamic acid were used as UV adsorbers.

Optical characteristics of polymer films were determined using SF-56 spectrophotometer by constructing spectral curves of absorption and transmission in the range of 200‒800 nm.

Based on analysis of spectral curves of absorption in polymer films, UV adsorbers which provide formation of colorless polymer films have been established. Spectral curves of light transmission of the studied polymer films in the visible portion of spectrum have allowed us to determine effect of UV adsorbers on film transparency and light transmission in relation to UV rays in the UV portion of the spectrum. Substances that contribute to reduction of UV radiation transmission through polymeric films and provide light protection properties were established.

Based on the multivariate analysis of the results obtained in the study of optical characteristics of polymer films, a composition based on styrene-acrylic polymer, cross-linking agent and UV adsorber was recommended. The found composition is suitable for its use in final processing of colored textile materials in order to form a colorless, transparent coating with light-protective properties.


Keywords


styrene-acrylic polymer; cross-linking agent; UV adsorber; polymer film; absorption; transmission; light protection.

References


Batchelor, S. N., Carr, D., Coleman, C. E., Fairclough, L., Jarvis, A. (2003). The photofading mechanism of commercial reactive dyes on cotton. Dyes and Pigments, 59 (3), 269–275. doi: https://doi.org/10.1016/s0143-7208(03)00118-9

Das, B. R. (2010). UV Radiation Protective Clothing. The Open Textile Journal, 3, 14–21.

Cristea, D., Vilarem, G. (2006). Improving light fastness of natural dyes on cotton yarn. Dyes and Pigments, 70 (3), 238–245. doi: https://doi.org/10.1016/j.dyepig.2005.03.006

Chowdhury, K. P. (2018). Effect of Special Finishes on the Functional Properties of Cotton Fabrics. Journal of Textile Science and Technology, 04 (02), 49–66. doi: https://doi.org/10.4236/jtst.2018.42003

Vishwanathan, N. (2004). Anti-Shrink/Anti-Stretch Treatment on Cellulosic Knits. Colourage, 50, 55–58.

Castelvetro, V., Francini, G., Ciardelli, G., Ceccato, M. (2001). Evaluating Fluorinated Acrylic Latices as Textile Water and Oil Repellent Finishes. Textile Research Journal, 71 (5), 399–406. doi: https://doi.org/10.1177/004051750107100506

Shao, H., Sun, J.-Y., Meng, W.-D., Qing, F.-L. (2004). Water and Oil Repellent and Durable Press Finishes for Cotton Based on a Perfluoroalkyl-Containing Multi-Epoxy Compound and Citric Acid. Textile Research Journal, 74 (10), 851–855. doi: https://doi.org/10.1177/004051750407401002

Speranskaya, T. A., Tarutina, L. I. (1976). Opticheskie svoystva polimerov. Leningrad: Himiya, 136.

Tager, A. A. (2007). Fiziko-himiya polimerov. Moscow: Nauchniy mir, 576.

El’yashevich, G. K., Kuryndin, I. S., Rozova, E. Y. (2017). Optical transmission of porous polyolefin films in immersion media. Journal of Optical Technology, 84 (7), 481. doi: https://doi.org/10.1364/jot.84.000481

Mohamed, A., Shaker, A., Razzaq, S. (2016). Optical Properties of Polyvinyl Chloride Doped with DCM dye Thin Films. World scientific news, 30, 45–56.

Mohammadian-Kohol, M., Asgari, M., Shakur, H. R. (2018). Effect of gamma irradiation on the structural, mechanical and optical properties of polytetrafluoroethylene sheet. Radiation Physics and Chemistry, 145, 11–18. doi: https://doi.org/10.1016/j.radphyschem.2017.12.007

Krynin, A. G., Hohlov, Yu. A. (2013). Optical performances thermostabilised polyethyleneterephtalate film used for the functional materials of a glass cover. Aviatsionnye materialy i tekhnologii, 4, 31–34.

Igumnov, S. M., Sokolov, V. I., Men'shikov, V. K., Mel'nik, O. A., Boyko, V. E., Dyachenko, V. I. et. al. (2012). Ftorsoderzhaschie monomery i polimery so spetsial'nymi svoystvami dlya integral'noy optiki i fotoniki. Doklady akademii nauk. Himiya, 446 (3), 288–293.

Serova, V. N. (2010). Οpticheskie i drugie materialy na osnove prozrachnyh polimerov. Kazan': KGTU, 540.

Najeeb, H. N., Balakit, A. A., Wahab, G. A., Kodeary, A. K. (2014). Study of the optical properties of poly (methyl methaacrylate) (PMMA) doped with a new diarylethen compound. Academic Research International, 5 (1), 48–56.

Li, Z.-R., Fu, K.-J., Wang, L.-J., Liu, F. (2008). Synthesis of a novel perfluorinated acrylate copolymer containing hydroxyethyl sulfone as crosslinking group and its application on cotton fabrics. Journal of Materials Processing Technology, 205 (1-3), 243–248. doi: https://doi.org/10.1016/j.jmatprotec.2007.11.284

Lee, S.-W., Park, J.-W., Kwon, Y.-E., Kim, S., Kim, H.-J., Kim, E.-A. et. al. (2012). Optical properties and UV-curing behaviors of optically clear semi-interpenetrated structured acrylic pressure sensitive adhesives. International Journal of Adhesion and Adhesives, 38, 5–10. doi: https://doi.org/10.1016/j.ijadhadh.2012.04.002

Slepchuk, I., Semeshko, O. Y., Asaulyuk, T. S., Saribekova, Y. G. (2018). Investigation of impact of crosslinking agents on characteristics of spatial net and properties of styrene-acrylic polymer films. Izvestiya Vysshikh Uchebnykh Zavedeniy Khimiya Khimicheskaya Tekhnologiya, 61 (7), 68–76. doi: https://doi.org/10.6060/ivkkt.20186107.5670

Saribyekova, Y., Kunik, A., Asaulyuk, T., Semeshko, O., Myasnykov, S. (2017). Development of styrene-acrylic polymeric compositions for the coating of textile materials used for packing. Eastern-European Journal of Enterprise Technologies, 5 (6 (89)), 35–41. doi: https://doi.org/10.15587/1729-4061.2017.110039

Yong, Q., Liang, C. (2019). Synthesis of an Aqueous Self-Matting Acrylic Resin with Low Gloss and High Transparency via Controlling Surface Morphology. Polymers, 11 (2), 322. doi: https://doi.org/10.3390/polym11020322

Negru, O. I., Vacareanu, L., Grigoras, M. (2014). Electrogenerated networks from poly[4-(diphenylamino)benzyl methacrylate] and their electrochromic properties. Express Polymer Letters, 8 (9), 647–658. doi: https://doi.org/10.3144/expresspolymlett.2014.68

Smirnov, M. A., Mukhtarov, A. S., Ivanova, N. V., Vakhonina, T. A., Semashko, V. V., Balakina, M. Y. (2014). The effect of chromophores concentration on the nonlinear optical activity of methacrylic copolymers with azochromophores in the side chain. Journal of Physics: Conference Series, 560, 012015. doi: https://doi.org/10.1088/1742-6596/560/1/012015

Derkowska-Zielinska, B., Skowronski, L., Sypniewska, M., Chomicki, D., Smokal, V., Kharchenko, O. et. al. (2018). Functionalized polymers with strong push-pull azo chromophores in side chain for optical application. Optical Materials, 85, 391–398. doi: https://doi.org/10.1016/j.optmat.2018.09.008

Avvakumova, N. I., Budarina, L. A., Divgun, S. M.; Kurenkov, V. F. (Ed.) (1990). Praktikum po himii i fizike polimerov. Moscow: Himiya, 304.

Akter, A., Uddin, M. M. (2019). Knit sector gains a great momentum in 2018. TextileToday. Available at: https://www.textiletoday.com.bd/knit-sector-gains-a-great-momentum-in-2018/

Looking into the Future of Global Knitting Industry. Available at: https://www.fibre2fashion.com/industry-article/5398/looking-into-the-future-of-global-knitting-industry

Kissa, E. (1971). Lightfastness of Reactive Dyes. Textile Research Journal, 41 (9), 715–719. doi: https://doi.org/10.1177/004051757104100901

Reinert, G., Fuso, F., Hilfiker, R., Schmidt, E. (1997). UV-Protecting properties of textile fabrics and their improvement. Textile Chemist & Colorist, 29 (12), 36–43.

Lee, J. J., Lee, H. H., Eom, S. I., Kim, J. P. (2001). UV absorber aftertreatment to improve lightfastness of natural dyes on protein fibres. Coloration Technology, 117 (3), 134–138. doi: https://doi.org/10.1111/j.1478-4408.2001.tb00051.x

Yang, Y., Naarani, V. (2007). Improvement of the lightfastness of reactive inkjet printed cotton. Dyes and Pigments, 74 (1), 154–160. doi: https://doi.org/10.1016/j.dyepig.2006.01.030

Thiagarajan, P., Nalankilli, G. (2013). Improving light fastness of reactive dyed cotton fabric with antioxidant and UV absorbers. Indian Journal of Fibre and Textile Research, 38 (2), 161–164.

Semeshko, O. Ya., Saribiekova, Yu. H. (2019). Perspektyvy rozrobky tekhnolohiy nadannia svitlostiykosti tekstylnym materialam viyskovoho ta tsyvilnoho pryznachennia. Perspektyvy rozvytku ozbroiennia ta viyskovoi tekhniky Sukhoputnykh viysk: zb. tez dop. Mizhnar. nauk.-prakt. konf. Lviv: NASV, 90.

Bauer, D. R., Dickie, R. A. (1980). Crosslinking chemistry and network structure in organic coatings. I. Cure of melamine formaldehyde/acrylic copolymer films. Journal of Polymer Science: Polymer Physics Edition, 18 (10), 1997–2014. doi: https://doi.org/10.1002/pol.1980.180181001


GOST Style Citations


The photofading mechanism of commercial reactive dyes on cotton / Batchelor S. N., Carr D., Coleman C. E., Fairclough L., Jarvis A. // Dyes and Pigments. 2003. Vol. 59, Issue 3. P. 269–275. doi: https://doi.org/10.1016/s0143-7208(03)00118-9 

Das B. R. UV Radiation Protective Clothing // The Open Textile Journal. 2010. Vol. 3. P. 14–21.

Cristea D., Vilarem G. Improving light fastness of natural dyes on cotton yarn // Dyes and Pigments. 2006. Vol. 70, Issue 3. P. 238–245. doi: https://doi.org/10.1016/j.dyepig.2005.03.006 

Chowdhury K. P. Effect of Special Finishes on the Functional Properties of Cotton Fabrics // Journal of Textile Science and Technology. 2018. Vol. 04, Issue 02. P. 49–66. doi: https://doi.org/10.4236/jtst.2018.42003 

Vishwanathan N. Anti-Shrink/Anti-Stretch Treatment on Cellulosic Knits // Colourage. 2004. Vol. 50. P. 55–58.

Evaluating Fluorinated Acrylic Latices as Textile Water and Oil Repellent Finishes / Castelvetro V., Francini G., Ciardelli G., Ceccato M. // Textile Research Journal. 2001. Vol. 71, Issue 5. P. 399–406. doi: https://doi.org/10.1177/004051750107100506 

Water and Oil Repellent and Durable Press Finishes for Cotton Based on a Perfluoroalkyl-Containing Multi-Epoxy Compound and Citric Acid / Shao H., Sun J.-Y., Meng W.-D., Qing F.-L. // Textile Research Journal. 2004. Vol. 74, Issue 10. P. 851–855. doi: https://doi.org/10.1177/004051750407401002 

Speranskaya T. A., Tarutina L. I. Opticheskie svoystva polimerov. Leningrad: Himiya, 1976. 136 p.

Tager A. A. Fiziko-himiya polimerov. Moscow: Nauchniy mir, 2007. 576 p.

El’yashevich G. K., Kuryndin I. S., Rozova E. Y. Optical transmission of porous polyolefin films in immersion media // Journal of Optical Technology. 2017. Vol. 84, Issue 7. P. 481. doi: https://doi.org/10.1364/jot.84.000481 

Mohamed A., Shaker A., Razzaq S. Optical Properties of Polyvinyl Chloride Doped with DCM dye Thin Films // World scientific news. 2016. Vol. 30. P. 45–56.

Mohammadian-Kohol M., Asgari M., Shakur H. R. Effect of gamma irradiation on the structural, mechanical and optical properties of polytetrafluoroethylene sheet // Radiation Physics and Chemistry. 2018. Vol. 145. P. 11–18. doi: https://doi.org/10.1016/j.radphyschem.2017.12.007 

Krynin A. G., Hohlov Yu. A. Optical performances thermostabilised polyethyleneterephtalate film used for the functional materials of a glass cover // Aviatsionnye materialy i tekhnologii. 2013. Issue 4. P. 31–34.

Ftorsoderzhaschie monomery i polimery so spetsial'nymi svoystvami dlya integral'noy optiki i fotoniki / Igumnov S. M., Sokolov V. I., Men'shikov V. K., Mel'nik O. A., Boyko V. E., Dyachenko V. I. et. al. // Doklady akademii nauk. Himiya. 2012. Vol. 446, Issue 3. P. 288–293.

Serova V. N. Οpticheskie i drugie materialy na osnove prozrachnyh polimerov: monografiya. Kazan': KGTU, 2010. 540 p.

Study of the optical properties of poly (methyl methaacrylate) (PMMA) doped with a new diarylethen compound / Najeeb H. N., Balakit A. A., Wahab G. A., Kodeary A. K. // Academic Research International. 2014. Vol. 5, Issue 1. Р. 48–56.

Synthesis of a novel perfluorinated acrylate copolymer containing hydroxyethyl sulfone as crosslinking group and its application on cotton fabrics / Li Z.-R., Fu K.-J., Wang L.-J., Liu F. // Journal of Materials Processing Technology. 2008. Vol. 205, Issue 1-3. P. 243–248. doi: https://doi.org/10.1016/j.jmatprotec.2007.11.284 

Optical properties and UV-curing behaviors of optically clear semi-interpenetrated structured acrylic pressure sensitive adhesives / Lee S.-W., Park J.-W., Kwon Y.-E., Kim S., Kim H.-J., Kim E.-A. et. al. // International Journal of Adhesion and Adhesives. 2012. Vol. 38. P. 5–10. doi: https://doi.org/10.1016/j.ijadhadh.2012.04.002 

Investigation of impact of crosslinking agents on characteristics of spatial net and properties of styrene-acrylic polymer films / Slepchuk I., Semeshko O. Y., Asaulyuk T. S., Saribekova Y. G. // Izvestiya Vysshikh Uchebnykh Zavedeniy Khimiya Khimicheskaya Tekhnologiya. 2018. Vol. 61, Issue 7. P. 68–76. doi: https://doi.org/10.6060/ivkkt.20186107.5670 

Development of styrene-acrylic polymeric compositions for the coating of textile materials used for packing / Saribyekova Y., Kunik A., Asaulyuk T., Semeshko O., Myasnykov S. // Eastern-European Journal of Enterprise Technologies. 2017. Vol. 5, Issue 6 (89). P. 35–41. doi: https://doi.org/10.15587/1729-4061.2017.110039 

Yong Q., Liang C. Synthesis of an Aqueous Self-Matting Acrylic Resin with Low Gloss and High Transparency via Controlling Surface Morphology // Polymers. 2019. Vol. 11, Issue 2. P. 322. doi: https://doi.org/10.3390/polym11020322 

Negru O. I., Vacareanu L., Grigoras M. Electrogenerated networks from poly[4-(diphenylamino)benzyl methacrylate] and their electrochromic properties // Express Polymer Letters. 2014. Vol. 8, Issue 9. P. 647–658. doi: https://doi.org/10.3144/expresspolymlett.2014.68 

The effect of chromophores concentration on the nonlinear optical activity of methacrylic copolymers with azochromophores in the side chain / Smirnov M. A., Mukhtarov A. S., Ivanova N. V., Vakhonina T. A., Semashko V. V., Balakina M. Y. // Journal of Physics: Conference Series. 2014. Vol. 560. P. 012015. doi: https://doi.org/10.1088/1742-6596/560/1/012015 

Functionalized polymers with strong push-pull azo chromophores in side chain for optical application / Derkowska-Zielinska B., Skowronski L., Sypniewska M., Chomicki D., Smokal V., Kharchenko O. et. al. // Optical Materials. 2018. Vol. 85. P. 391–398. doi: https://doi.org/10.1016/j.optmat.2018.09.008 

Avvakumova N. I., Budarina L. A., Divgun S. M. Praktikum po himii i fizike polimerov: ucheb. izd. / V. F. Kurenkov (Ed.). Moscow: Himiya, 1990. 304 p.

Akter A., Uddin M. M. Knit sector gains a great momentum in 2018 // TextileToday. 2019. URL: https://www.textiletoday.com.bd/knit-sector-gains-a-great-momentum-in-2018/

Looking into the Future of Global Knitting Industry. URL: https://www.fibre2fashion.com/industry-article/5398/looking-into-the-future-of-global-knitting-industry

Kissa E. Lightfastness of Reactive Dyes // Textile Research Journal. 1971. Vol. 41, Issue 9. P. 715–719. doi: https://doi.org/10.1177/004051757104100901 

UV-Protecting properties of textile fabrics and their improvement / Reinert G., Fuso F., Hilfiker R., Schmidt E. // Textile Chemist & Colorist. 1997. Vol. 29, Issue 12. P. 36–43.

UV absorber aftertreatment to improve lightfastness of natural dyes on protein fibres / Lee J. J., Lee H. H., Eom S. I., Kim J. P. // Coloration Technology. 2001. Vol. 117, Issue 3. P. 134–138. doi: https://doi.org/10.1111/j.1478-4408.2001.tb00051.x 

Yang Y., Naarani V. Improvement of the lightfastness of reactive inkjet printed cotton // Dyes and Pigments. 2007. Vol. 74, Issue 1. P. 154–160. doi: https://doi.org/10.1016/j.dyepig.2006.01.030 

Thiagarajan P., Nalankilli G. Improving light fastness of reactive dyed cotton fabric with antioxidant and UV absorbers // Indian Journal of Fibre and Textile Research. 2013. Vol. 38, Issue 2. P. 161–164.

Semeshko O. Ya., Saribiekova Yu. H. Perspektyvy rozrobky tekhnolohiy nadannia svitlostiykosti tekstylnym materialam viyskovoho ta tsyvilnoho pryznachennia // Perspektyvy rozvytku ozbroiennia ta viyskovoi tekhniky Sukhoputnykh viysk: zb. tez dop. Mizhnar. nauk.-prakt. konf. Lviv: NASV, 2019. P. 90.

Bauer D. R., Dickie R. A. Crosslinking chemistry and network structure in organic coatings. I. Cure of melamine formaldehyde/acrylic copolymer films // Journal of Polymer Science: Polymer Physics Edition. 1980. Vol. 18, Issue 10. P. 1997–2014. doi: https://doi.org/10.1002/pol.1980.180181001 







Copyright (c) 2019 Olga Semeshko, Maria Pasichnyk, Lyudmila Hyrlya, Viktoria Vasylenko, Elena Kucher

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN (print) 1729-3774, ISSN (on-line) 1729-4061