DOI: https://doi.org/10.15587/1729-4061.2019.169219

Determining the composition of burned gas using the method of constraints as a problem of model interpretation

Olexander Brunetkin, Valentin Davydov, Oleksandr Butenko, Ganna Lysiuk, Andrii Bondarenko

Abstract


This paper proposes a method for solving the problem on determining the unknown composition of a gaseous hydrocarbon fuel during its combustion in real time. The problem had been defined as the inverse, ill-posed problem. A technique for measuring technological parameters makes it possible to specify it as a complex interpretation problem.

To solve it, a "library" method has been selected (selection), which is the most universal one. To implement it, a method has been constructed to compile a library in the form of a working three-dimensional array. The source data for each solution to a direct problem in the generated array are represented in the form of a single number. To this end, a position principle for recording decimal numbers has been applied.

Compiling a working array employed a method for comparing the excess factor of an oxidizer and the ratio of volumetric consumption of an oxidizer and fuel. This has made it possible to apply the results from solving a direct problem on determining the temperature of combustion products in order to solve the inverse problem on determining this composition based on the measured temperature.

A method has been devised for finding a solution among the elements of the working array based on the results from technological measurements of temperature of the combustion products of the burnt fuel and the ratio of the volumetric consumption of an oxidizer and fuel.

The work shows the absence of errors introduced to the solution by an algorithm of the proposed method. When modeling precise technological measurements, errors are due only to the sampling of source data while solving a direct problem. The influence of measuring the technological parameters on accuracy in determining the composition of fuel has been defined. It does not exceed the magnitude that is permissible for engineering calculations.

The proposed calculation method could make it possible to use under a managed mode, in energy and in the chemical industry, a large amount of hydrocarbon fuel gases that are currently considered waste. Their energy equivalent is comparable with the energy needs by the African continent.


Keywords


composition of fuel; inverse problem; complex interpretation problem; constraints method.

References


IPCC, 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Available at: https://www.ipcc.ch/site/assets/uploads/2018/05/SYR_AR5_FINAL_full_wcover.pdf

New Satellite Data Reveals Progress: Global Gas Flaring Declined in 2017 (2018). Available at: https://www.worldbank.org/en/news/press-release/2018/07/17/new-satellite-data-reveals-progress-global-gas-flaring-declined-in-2017

Eman, A. E. (2015). Gas flaring in industry: an overview. Petroleum & Coal, 57 (5), 532–555. Available at: http://large.stanford.edu/courses/2016/ph240/miller1/docs/emam.pdf

Zhenhai, D., Lianyun, S. (2012). Design of Temperature Controller for Heating Furnace in Oil Field. Physics Procedia, 24, 2083–2088. doi: https://doi.org/10.1016/j.phpro.2012.02.305

Larionov, V. M., Van'kov, Yu. V., Sayfullin, E. R., Nazarychev, S. A., Malahov, A. O. (2017). Pat. No. 2647940 RF. Sposob avtomaticheskoy optimizatsii protsessa szhiganiya topliva peremennogo sostava. MPK F23C 1/02, F23C 1/08. No. 2017116036/06; declareted: 04.05.2017; published: 21.03.2018, Bul. No. 9, 23.

Piteľ, J., Mižáková, J., Hošovský, A. (2013). Biomass Combustion Control and Stabilization Using Low-Cost Sensors. Advances in Mechanical Engineering, 5, 685157. doi: https://doi.org/10.1155/2013/685157

Elshafei, M., Habib, M. A., Al-Zaharnah, I., Nemitallah, M. A. (2014). Boilers Optimal Control for Maximum Load Change Rate. Journal of Energy Resources Technology, 136 (3), 031301. doi: https://doi.org/10.1115/1.4027563

Morales, S. A., Barragan, D. R., Kafarov, V. (2018). 3D CFD Simulation of Combustion in Furnaces Using Mixture Gases with Variable Composition. Chemical Engineering Transactions, 70, 121–126. doi: http://doi.org/10.3303/CET1870021

Buldakov, M. A., Korolev, B. V., Matrosov, I. I., Petrov, D. V., Tikhomirov, A. A. (2013). Raman gas analyzer for determining the composition of natural gas. Journal of Applied Spectroscopy, 80 (1), 124–128. doi: https://doi.org/10.1007/s10812-013-9731-6

Schorsch, S., Kiefer, J., Steuer, S., Seeger, T., Leipertz, A., Gonschorek, S. et. al. (2011). Development of an Analyzer System for Real‐time Fuel Gas Characterization in Gas Turbine Power Plants. Chemie Ingenieur Technik, 83 (3), 247–253. doi: https://doi.org/10.1002/cite.201000095

Ferreira, B. D. L., Paulo, J. M., Braga, J. P., Sebastião, R. C. O., Pujatti, F. J. P. (2013). Methane combustion kinetic rate constants determination: an ill-posed inverse problem analysis. Química Nova, 36 (2), 262–266. doi: https://doi.org/10.1590/s0100-40422013000200011

Brunetkin, A. I., Maksimov, M. V. (2015). The method for determination of a combustible gase composition during its combustion. Naukovyi visnyk Natsionalnoho hirnychoho universytetu, 5, 83–90. Available at: http://nbuv.gov.ua/UJRN/Nvngu_2015_5_16

Glushko, V. P. (Ed.) (1971). Termodinamicheskie i teplofizicheskie svoystva produktov sgoraniya: spravochnik. Vol. 1: Metody rascheta. Moscow: VINITI, 266.

Maksymov, M. V., Brunetkin, O. I., Maksymova, O. B. (2018). Application of a Special Method of Nondimensionization in the Solution of Nonlinear Dynamics Problems. Control Systems: Theory and Applications. Series in Automation, Control and Robotics. Chap. 5. Gistrup, 97–144.

Glushko, V. P. (Ed.) (1973). Termodinamicheskie i teplofizicheskie svoystva produktov sgoraniya: spravochnik. Vol. 3: Topliva na osnove kisloroda i vozduha. Moscow: VINITI, 624.


GOST Style Citations


IPCC, 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. URL: https://www.ipcc.ch/site/assets/uploads/2018/05/SYR_AR5_FINAL_full_wcover.pdf

New Satellite Data Reveals Progress: Global Gas Flaring Declined in 2017. 2018. URL: https://www.worldbank.org/en/news/press-release/2018/07/17/new-satellite-data-reveals-progress-global-gas-flaring-declined-in-2017

Eman A. E. Gas flaring in industry: an overview // Petroleum & Coal. 2015. Vol. 57, Issue 5. P. 532–555. URL: http://large.stanford.edu/courses/2016/ph240/miller1/docs/emam.pdf

Zhenhai D., Lianyun S. Design of Temperature Controller for Heating Furnace in Oil Field // Physics Procedia. 2012. Vol. 24. P. 2083–2088. doi: https://doi.org/10.1016/j.phpro.2012.02.305 

Sposob avtomaticheskoy optimizatsii protsessa szhiganiya topliva peremennogo sostava: Pat. No. 2647940 RF. MPK F23C 1/02, F23C 1/08 / Larionov V. M., Van'kov Yu. V., Sayfullin E. R., Nazarychev S. A., Malahov A. O. No. 2017116036/06; declareted: 04.05.2017; published: 21.03.2018, Bul. No. 9. 23 p.

Piteľ J., Mižáková J., Hošovský A. Biomass Combustion Control and Stabilization Using Low-Cost Sensors // Advances in Mechanical Engineering. 2013. Vol. 5. P. 685157. doi: https://doi.org/10.1155/2013/685157 

Boilers Optimal Control for Maximum Load Change Rate / Elshafei M., Habib M. A., Al-Zaharnah I., Nemitallah M. A. // Journal of Energy Resources Technology. 2014. Vol. 136, Issue 3. P. 031301. doi: https://doi.org/10.1115/1.4027563 

Morales S. A., Barragan D. R., Kafarov V. 3D CFD Simulation of Combustion in Furnaces Using Mixture Gases with Variable Composition // Chemical Engineering Transactions. 2018. Vol. 70. P. 121–126. doi: http://doi.org/10.3303/CET1870021

Raman gas analyzer for determining the composition of natural gas / Buldakov M. A., Korolev B. V., Matrosov I. I., Petrov D. V., Tikhomirov A. A. // Journal of Applied Spectroscopy. 2013. Vol. 80, Issue 1. P. 124–128. doi: https://doi.org/10.1007/s10812-013-9731-6 

Development of an Analyzer System for Real‐time Fuel Gas Characterization in Gas Turbine Power Plants / Schorsch S., Kiefer J., Steuer S., Seeger T., Leipertz A., Gonschorek S. et. al. // Chemie Ingenieur Technik. 2011. Vol. 83, Issue 3. P. 247–253. doi: https://doi.org/10.1002/cite.201000095 

Methane combustion kinetic rate constants determination: an ill-posed inverse problem analysis / Ferreira B. D. L., Paulo J. M., Braga J. P., Sebastião R. C. O., Pujatti F. J. P. // Química Nova. 2013. Vol. 36, Issue 2. P. 262–266. doi: https://doi.org/10.1590/s0100-40422013000200011 

Brunetkin A. I., Maksimov M. V. The method for determination of a combustible gase composition during its combustion // Naukovyi visnyk Natsionalnoho hirnychoho universytetu. 2015. Issue 5. P. 83–90. URL: http://nbuv.gov.ua/UJRN/Nvngu_2015_5_16

Termodinamicheskie i teplofizicheskie svoystva produktov sgoraniya: spravochnik. Vol. 1: Metody rascheta / V. P. Glushko (Ed.). Moscow: VINITI, 1971. 266 p.

Maksymov M. V., Brunetkin O. I., Maksymova O. B. Application of a Special Method of Nondimensionization in the Solution of Nonlinear Dynamics Problems. Control Systems: Theory and Applications. Series in Automation, Control and Robotics. Chap. 5. Gistrup, 2018. P. 97–144.

Termodinamicheskie i teplofizicheskie svoystva produktov sgoraniya: spravochnik. Vol. 3: Topliva na osnove kisloroda i vozduha / V. P. Glushko (Ed.). Moscow: VINITI, 1973. 624 p.







Copyright (c) 2019 Olexander Brunetkin, Valentin Davydov, Oleksandr Butenko, Ganna Lysiuk, Andrii Bondarenko

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN (print) 1729-3774, ISSN (on-line) 1729-4061