Using the intensity of absorbed gamma radiation to control the content of iron in ore

Authors

DOI:

https://doi.org/10.15587/1729-4061.2019.170341

Keywords:

rapid control, absorbed, scattered gamma-quanta, nuclear-physical method, detector, albedo.

Abstract

The paper reports results of mathematical modeling of the intensity of absorbed gamma radiation for determining the iron content in IOR. It was shown that to enhance the accuracy of rapid control of the iron content in IOR, it is advisable to use absorbed gamma radiation. This approach is the improvement of the nuclear-physical method for determining the iron content in IOR. Reflected gamma radiation is used in the existing nuclear-physical methods for determining the iron content in IOR. The gamma-gamma method, the feature of which is the use of "soft" gamma radiation, is used in this method. This leads to the fact that the irradiated surface reflects only a small part of the original flux of gamma radiation. As a result, measuring the intensity of the scattered gamma radiation is characterized by substantial relative errors and, consequently, low-precision of rapid control of iron content in IOR. The use of absorbed gamma radiation as the main part of gamma radiation, makes it possible to significantly reduce the relative error of measurement of the intensity of gamma radiation, that is, to enhance the accuracy of rapid control of the iron content in IOR.

The work considered the method of "central geometry" for measuring the intensity of gamma radiation as the most common. This method makes it possible to take into consideration in the mathematical model the dependence of the intensity of absorbed gamma radiation not only on the properties of irradiated surface of rock mass, but also on the geometric parameters in measurement. The main feature of the model is the use of albedo parameter, which allows linking the scattered and absorbed gamma radiation. Representation of the synthesized model in the dimensionless form enabled both simplification of calculations, and generalization of the results of mathematical modeling of the intensity of absorbed gamma radiation. In order to compare the values of intensities of reflected and absorbed gamma-radiation in terms of central geometry, the appropriate numerical calculations were performed. The results of the conducted calculations proved the effectiveness of using absorbed gamma radiation to determine the iron content in IOR. Thus, in the range of 50‒60 percent of the iron content, the sensitivity of absorbed gamma-radiation is considerably higher (by two times) than sensitivity of scattered gamma radiation.

Author Biographies

Albert Azaryan, Kryvyi Rih National University Vitaliya Matusevycha str., 11, Kryvyi Rih, Ukraine, 50027

Doctor of Technical Sciences, Professor

Department of Modeling and Software

Andrey Gritsenko, Kryvyi Rih National University Vitaliya Matusevycha str., 11, Kryvyi Rih, Ukraine, 50027

Researcher

Research Section

Annait Trachuk, Kryvyi Rih National University Vitaliya Matusevycha str., 11, Kryvyi Rih, Ukraine, 50027

PhD, Associate Professor

Department of Modeling and Software

Vadim Serebrenikov, Donetsk National University of Economics and Trade named after Mikhail Tugan-Baranovsky Tramvaina str., 16, Kryvyi Rih, Ukraine, 50027

PhD, Assistant Professor

Department of Higher Mathematics and Information Systems

Dmitriy Shvets, Kryvyi Rih National University Vitaliya Matusevycha str., 11, Kryvyi Rih, Ukraine, 50027

Assistant

Department of Modeling and Software

References

  1. Ibraheem, A. A., Algahatani, F. (2018). Analysis of alpha particles scattered from 32S at 386 MeV. AIP Conference Proceedings, 1976, 020022. doi: https://doi.org/10.1063/1.5042389
  2. Kiran, K. U., Ravindraswami, K., Eshwarappa, K. M., Somashekarappa, H. M. (2015). Experimental and simulated study of detector collimation for a portable 3″×3″ NaI(Tl) detector system for in-situ measurements. Journal of Radiation Research and Applied Sciences, 8 (4), 597–605. doi: https://doi.org/10.1016/j.jrras.2015.07.006
  3. Çelik, N., Çevik, U., Çelik, A. (2012). Effect of detector collimation on the measured mass attenuation coefficients of some elements for 59.5–661.6keV gamma-rays. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 281, 8–14. doi: https://doi.org/10.1016/j.nimb.2012.04.003
  4. Makek, M., Bosnar, D., Pavelić, L. (2019). Scintillator Pixel Detectors for Measurement of Compton Scattering. Condensed Matter, 4 (1), 24. doi: https://doi.org/10.3390/condmat4010024
  5. Díaz-H, K. V., Cristancho, F. (2016). Effect of sample thickness on 511 keV single Compton-scattered gamma rays. AIP Conference Proceedings, 1753, 080001. doi: https://doi.org/10.1063/1.4955371
  6. Flechas, D., Sarmiento, L. G., González, N., Gómez-Muñoz, J., Garzón, C., Fajardo, E., Cristancho, F. (2016). The application possibilities of the gamma-ray Compton backscattering technique. AIP Conference Proceedings, 1529, 40. doi: https://doi.org/10.1063/1.4804078
  7. Azaryan, A. A., Azaryan, V. A., Trachuk, A. A., Grischenko, A. N., Serebrenikov, V. M. (2018). Mathematical model of interaction of gamma radiation with rocks as a source of information on the content of iron in the logging of blast holes. XXXIII Mizhnarodna konferentsiya «Rozvytok nauky v XXI stolitti». Kharkiv, 40–48.
  8. Azaryan, A., Gritsenko, A., Trachuk, A., Shvets, D. (2018). Development of the method to operatively control quality of iron ore raw materials at open and underground extraction. Eastern-European Journal of Enterprise Technologies, 5 (5 (95)), 13–19. doi: https://doi.org/10.15587/1729-4061.2018.144003
  9. Azaryan, A. A., Dryga, V. V., Tsybulevskiy, Yu. E. (2005). Issledovanie avtogeneratornogo metoda kontrolya soderzhaniya zheleza magnitnogo v produktah obogascheniya. Kachestvo mineral'nogo syr'ya, 117–123.
  10. Morkun, V., Morkun, N., Pikilnyak, A. (2015). The study of volume ultrasonic waves propagation in the gas-containing iron ore pulp. Ultrasonics, 56, 340–343. doi: https://doi.org/10.1016/j.ultras.2014.08.022
  11. Shayakhmetov, B., Issagulov, A., Baisanov, A., Karakeyeva, G., Issagulovа, D. (2014). Studying phase structure of burned ferrous manganese ores by method of nuclear gamma-resonance spectroscopy. Metalurgija, 53 (2), 231–234.
  12. Manjunatha, M., Kumar, R., Anupama, A. V., Khopkar, V. B., Damle, R., Ramesh, K. P., Sahoo, B. (2019). XRD, internal field-NMR and Mössbauer spectroscopy study of composition, structure and magnetic properties of iron oxide phases in iron ores. Journal of Materials Research and Technology, 8 (2), 2192–2200. doi: https://doi.org/10.1016/j.jmrt.2019.01.022
  13. Mashkovich, V. P., Kudryavtseva, A. V. (1995). Zaschita ot ioniziruyuschih izlucheniy. Moscow: Energoatomizdat, 495.
  14. Azaryan, A. A., Serebrenikov, V. M. (1988). Matematicheskoe modelirovanie yadernofizicheskih metodov analiza hromovyh rud. Gorniy zhurnal, 6, 25–27.
  15. Dzyublik, A. Ya., Sadykov, E. K., Petrov, G. I., Arinin, V. V., Vagizov, F. H., Spivak, V. Yu. (2013). Mossbauer forward scattering spectra of ferromagnets in radio-frequency magnetic field. Yaderna fizyka ta enerhetyka, 13 (1), 73–82. Available at: http://nbuv.gov.ua/UJRN/yadf_2013_13_1_12
  16. Shipachev, V. S. (1981). Kurs vysshey matematiki. Moscow: Izd-vo Mosk. un-ta, 280.
  17. Guhman, A. A. (1973). Vvedenie v teoriyu podobiya. Moscow: Vysshaya shkola, 296.
  18. Sedov, L. I. (1987). Metody podobiya i razmernosti v mekhanike. Moscow: Nauka, 432.
  19. Makarov, E. G. (2009). Mathcad: Uchebniy kurs. Sankt-Peterburg: Piter, 384.
  20. Lutsenko, I., Oksanych, I., Shevchenko, I., Karabut, N. (2018). Development of the method for modeling operational processes for tasks related to decision making. Eastern-European Journal of Enterprise Technologies, 2 (4 (92)), 26–32. doi: https://doi.org/10.15587/1729-4061.2018.126446
  21. Lutsenko, I., Fomovskaya, E., Oksanych, I., Vikhrova, E., Serdiuk, O. (2017). Formal signs determination of efficiency assessment indicators for the operation with the distributed parameters. Eastern-European Journal of Enterprise Technologies, 1 (4 (85)), 24–30. doi: https://doi.org/10.15587/1729-4061.2017.91025
  22. Azaryan, A. (2015). Research of influence of monocrystal thickness NAJ(TL) on the intensity of the integrated flux of scattered gamma radiation. Metallurgical and Mining Industry, 2, 43–46.
  23. Azaryan, A., Gritsenko, A. (2011). Mobile station for logging of blast holes. Novi technologii, 4, 52–55.
  24. Azaryan, A., Azaryan, V. (2015). Use of Bourger-Lambert-Bera law for the operative control and quality management of mineral raw materials. Metallurgical and Mining Industry, 1, 4–8.
  25. Shvets, D. V. (2018). Avtomaticheskoe upravlenie protsessom izmel'cheniya magnetitovyh rud na osnove opredeleniya ih prochnosti. Sbornik nauchnyh trudov "Kachestvo mineral'nogo syr'ya", 2.
  26. Azaryan, A., Pikilnyak, A., Shvets, D. (2015). Complex automation system of iron ore preparation for beneficiation. Metallurgical and mining industry, 8, 64–66.
  27. Morkun, V., Morkun, N., Tron, V., Hryshchenko, S. (2017). Investigation of the effect of characteristics of gas­containing suspensions on the parameters of the process of ultrasonic wave propagation. Eastern-European Journal of Enterprise Technologies, 6 (5 (90)), 49–58. doi: https://doi.org/10.15587/1729-4061.2017.118943
  28. Porkuyan, O. V., Sotnikova, T. G. (2010). Kombinirovannyy metod opredeleniya otnositel'nogo soderzhaniya magnetita v tverdoy faze zhelezorudnoy pul'py. Vestnik Nats. tekhn. un-ta "KhPI", 12, 29–36.
  29. Val'ter, A. K., Zalyubovskiy, I. I. (1991). Yadernaya fizika. Kharkiv: Osnova, 480.
  30. Tatarnikov, A. P. (1974). Yadernofizicheskie metody obogascheniya poleznyh iskopaemyh. Moscow: Atomizdat, 145.
  31. Plaksin, I. N., Starchik, L. P. (1966). Yaderno-fizicheskie metody kontrolya veschestvennogo sostava: yadernye reaktsii i aktivatsionniy analiz. Moscow: Nauka, 204.
  32. Yakubovich, A. L., Zaytsev, E. I., Przhiyalgovskiy, S. M. (1982). Yaderno-fizicheskie metody analiza gornyh porod. Moscow: Energoatomizdat, 264.
  33. Frolov, V. V. (1976). Yaderno-fizicheskie metody kontrolya delyaschihsya veschestv. Moscow: Atomizdat, 128.

Downloads

Published

2019-06-13

How to Cite

Azaryan, A., Gritsenko, A., Trachuk, A., Serebrenikov, V., & Shvets, D. (2019). Using the intensity of absorbed gamma radiation to control the content of iron in ore. Eastern-European Journal of Enterprise Technologies, 3(5 (99), 29–35. https://doi.org/10.15587/1729-4061.2019.170341

Issue

Section

Applied physics