Exploring a possibility to control the stressed­strained state of cylinder liners in diesel engines by the tribotechnology of alignment





liner, additive, copper glycerate, alignment, surface layer, electrolyte, coercive force, electrical circuit, strain, cylinder liner


Our research into the formation of a functional copper-containing surface layer on parts of automobile engines by using an alignment tribotechnology has established a decrease in the wear of parts during their operation. It was found that the formed coating creates an elastic layer that reduces strains in a material of engine parts. Our experimental study of the coercive force of parts' working surfaces has confirmed a decrease in the accumulation of destructive stresses in the near-surface layers of a components' material. In turn, a comparative analysis of the obtained results by using a coercimetric method confirms that the proposed aligning tribotechnology leads to reduction of the stressed-strained state and makes it possible to improve wear resistance and enhance the technical condition of diesel engine cylinder liners: the magnitude of coercive force reduces by 7.5 %, while operating time increases by 16 %. In this case, at larger operating time: 254.8 thousand km against 220.5 thousand km, according to data on the coercive force (14.2…9.1) A/cm and (13.2…9.0) А/cm, it is almost in the same condition.

The functional surface layer forms when introducing a composite oil to the tribotechnology of cold alignment of an automobile powertrain. We have proposed and implemented a circuit to connect electric current to components at an engine's cylinder-piston group as a result of studying the developed tribotechnology of alignment. The features of this scheme are that the constant electric current is supplied by the plus polarity, through the brush-collector node, to the crankshaft, and by the minus polarity, through the clamping contact, to the crankcase block.

The research results suggest a possibility to control the internal strains and the subsequent magnitude of wear in a material of working heavily-loaded components of automobile powertrains provided they are serviced properly. The proposed tribotechnology of alignment could be of interest for both service departments at trucking companies and for car service stations.

Author Biographies

Viktor Aulin, Central Ukrainian National Technical University Universytetskyi ave., 8, Kropyvnytskyi, Ukraine, 25006

Doctor of Technical Sciences, Professor

Department of Maintenance and Repair of Machines

Andrii Hrynkiv, Central Ukrainian National Technical University Universytetskyi ave., 8, Kropyvnytskyi, Ukraine, 25006

PhD, Senior Researcher

Department of Maintenance and Repair of Machines

Sergii Lysenko, Central Ukrainian National Technical University Universytetskyi ave., 8, Kropyvnytskyi, Ukraine, 25006

PhD, Associate Professor

Department of Maintenance and Repair of Machines

Aleksandr Dykha, Khmelnytskyi National University Instytuts’ka str., 11, Khmelnytskyi, Ukraine, 29016

Doctor of Technical Sciences, Professor

Department of Tribology, Cars and Materials Science

Taras Zamota, Volodymyr Dahl East Ukrainian National University Tsentralnyi ave., 59-а, Severodonetsk, Ukraine, 93400

Doctor of Technical Sciences, Associate Professor

Department of Logistics and Traffic Safety

Volodymyr Dzyura, Ternopil Ivan Puluj National Technical University Ruska str., 56, Ternopil, Ukraine, 46001

PhD, Associate Professor

Department of Transport Technologies and Mechanics


Aulin, V., Hrinkiv, A., Dykha, A., Chernovol, M., Lyashuk, O., Lysenko, S. (2018). Substantiation of diagnostic parameters for determining the technical condition of transmission assemblies in trucks. Eastern-European Journal of Enterprise Technologies, 2 (1 (92)), 4–13. doi: https://doi.org/10.15587/1729-4061.2018.125349

Aulin, V., Hrynkiv, A., Lysenko, S., Rohovskii, I., Chernovol, M., Lyashuk, O., Zamota, T. (2019). Studying truck transmission oils using the method of thermal-oxidative stability during vehicle operation. Eastern-European Journal of Enterprise Technologies, 1 (6 (97)), 6–12. doi: https://doi.org/10.15587/1729-4061.2019.156150

Osadchiy, S. I., Kalich, V. M., Didyk, O. K. (2013). Structural identification of unmanned supercavitation vehicle based on incomplete experimental data. 2013 IEEE 2nd International Conference Actual Problems of Unmanned Air Vehicles Developments Proceedings (APUAVD). doi: https://doi.org/10.1109/apuavd.2013.6705294

Chernovol, M. I., Solovykh, E. K. (1997). Prediction of thickness of solid-lubricant film formed at friction of metal-polymer composite coating. Journal of Friction and Wear, 18 (2), 40–45. Available at: https://www.scopus.com/record/display.uri?eid=2-s2.0-4243070931&origin=inward&txGid=c8b2d89199374bc6b0be3f1916fe5812

Kopčanová, S., Kučera, M., Kučera, M., Kučera, M., Kučerová, V. (2018). The Effect of Friction Behaviour and Wear Protection Ability of Selected Base Lubricants on Tribo-pairs Parameters of Machine Components. Tribology in Industry, 40 (4), 681–691. doi: https://doi.org/10.24874/ti.2018.40.04.14

Ashmarin, G. M., Aulin, V. V., Golubev, M. Yu., Zvonkov, S. D. (1986). Grain boundary internal friction of unalloyed copper subjected to continuous laser radiation. Physics and chemistry of materials treatment, 20 (5), 476–478. Available at: https://www.scopus.com/record/display.uri?eid=2-s2.0-0022781198&origin=inward&txGid=c61495ffd8c85481709b2b372a040b74

Dykha, A., Aulin, V., Makovkin, O., Posonskiy, S. (2017). Determining the characteristics of viscous friction in the sliding supports using the method of pendulum. Eastern-European Journal of Enterprise Technologies, 3 (7 (87)), 4–10. doi: https://doi.org/10.15587/1729-4061.2017.99823

Levanov, I., Zadorozhnaya, E., Vichnyakov, D. (2019). Influence of Friction Geo-modifiers on HTHS Viscosity of Motor Oils. Proceedings of the 4th International Conference on Industrial Engineering, 967–972. doi: https://doi.org/10.1007/978-3-319-95630-5_101

Abd Al-Samieh, M. F. (2019). Surface Roughness Effects for Newtonian and Non-Newtonian Lubricants. Tribology in Industry, 41 (1), 56–63. doi: https://doi.org/10.24874/ti.2019.41.01.07

Sokolovskij, M. F., Chernovol, M. I., Chabannyj, V. Ya., Nalivajko, V. N., Pavlyuk-Moroz, V. A. Increasing the chemical apparatus component service life using contact welding-on. Available at: https://www.researchgate.net/publication/295822572_Increasing_the_chemical_apparatus_component_service_life_using_contact_welding-on

Sokolovskii, M. F., Chernovol, M. I., Chabannyi, V. Y., Nalivaiko, V. N., Pavlyuk-Moroz, V. A. (1992). Increasing the life of chemical apparatus paets by contact surfacing. Chemical and Petroleum Engineering, 28 (11), 695–697. doi: https://doi.org/10.1007/bf01150933

Levanov, I., Doykin, A., Zadorozhnaya, E., Novikov, R. (2017). Investigation Antiwear Properties of Lubricants with the Geo-Modifiers of Friction. Tribology in Industry, 39 (3), 302–306. doi: https://doi.org/10.24874/ti.2017.39.03.04

Ashmarin, G. M., Aulin, V. V., Golobev, M. Yu., Zvonkov, S. D., Malyuchkov, O. T. (1986). Electrical conductivity of copper after laser treatment. Russian metallurgy. Metally, 5, 185–189. Available at: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0022959597&partnerID=40&md5=a27075bbaeb23b2bea5c5f9b2cc75f68

Michalec, M., Svoboda, P., Krupka, I., Hartl, M. (2018). Tribological Behaviour of Smart Fluids Influenced by Magnetic and Electric Field – A Review. Tribology in Industry, 40 (4), 515–528. doi: https://doi.org/10.24874/ti.2018.40.04.01

Chernovol, M. I. (1991). Electrolytic polymer-metal coatings. Protection of Metals (English translation of Zaschita Metallov), 26 (5), 667–668. Available at: https://www.scopus.com/record/display.uri?eid=2-s2.0-0026155660&origin=inward&txGid=1c5bb6f16aff0dab643e4f4c23c268a0

Chernets, M. (2019). A Method for Predicting Contact Strength and Life of Archimedes and Involute Worm Gears, Considering the Effect of Wear and Teeth Correction. Tribology in Industry, 41 (1), 134–141. doi: https://doi.org/10.24874/ti.2019.41.01.15

Chernovol, M. I., Solovykh, E. K. (1997). Calculation of solid-lubricant film thickness in friction of the composite polymer-metal coating. Trenie i Iznos, 18 (2), 181–186. Available at: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0031084372&partnerID=40&md5=096f22bf978a95f9a53608ad174f42e6

Schott, M., Schlarb, A. K. (2018). Simulation of the thermal budget of plastic/metal tribological pairings by means of FEM [Simulation des thermischen haushalts von kunststoff/metall-gleitpaarungen mittels FEM]. Tribologie und Schmierungstechnik, 65 (1), 20–26. Available at: https://www.scopus.com/record/display.uri?eid=2-s2.0-85042685942&origin=inward&txGid=d9fb6055c4ee7a736a08f0b84cc403a8

Aulin, V., Warouma, A., Lysenko, S., Kuzyk, A. (2016). Improving of the wear resistance of working parts agricultural machinery by the implementation of the effect of self-sharpening. International Journal of Engineering and Technology, 5 (4), 126–130. doi: https://doi.org/10.14419/ijet.v5i4.6386

Aulin, V., Lyashuk, O., Tykhyi, A., Karpushyn, S., Denysiuk, N. (2018). Influence of Rheological Properties of a Soil Layer Adjacent to the Working Body Cutting Element on the Mechanism of Soil Cultivation. Acta Technologica Agriculturae, 21 (4), 153–159. doi: https://doi.org/10.2478/ata-2018-0028

Kim, D. W., Eum, K., Kim, H., Kim, D., Mello, M. D. de, Park, K., Tsapatsis, M. (2019). Continuous ZIF-8/reduced graphene oxide nanocoating for ultrafast oil/water separation. Chemical Engineering Journal, 372, 509–515. doi: https://doi.org/10.1016/j.cej.2019.04.179

Hiilser, P. (2018). Electroplating meets lamella - Successful combination of two coating technologies (Part 1) [Galvanik trifft lamelle - erfolgreiche verbindung zweier beschichtungstechnologien (teil 1)]. Galvanotechnik, 109 (10), 1964–1972. Available at: https://www.scopus.com/record/display.uri?eid=2-s2.0-85056282820&origin=inward&txGid=3666f251791780c664096e6220fdea7d

Riva, G., Perricone, G., Wahlström, J. (2019). Simulation of Contact Area and Pressure Dependence of Initial Surface Roughness for Cermet-Coated Discs Used in Disc Brakes. Tribology in Industry, 41 (4), 1–13. doi: https://doi.org/10.24874/ti.2019.41.01.01

Bautista-Ruiz, J., Caicedo, J. C., Aperador, W. (2019). Evaluation of the Wear-Corrosion Process in Beta-Tricalcium(β-TCP) Films Obtained by Physical Vapor Deposition (PVD). Tribology in Industry, 41 (1), 126–133. doi: https://doi.org/10.24874/ti.2019.41.01.14

Aulin, V., Lyashuk, O., Pavlenko, O., Velykodnyi, D., Hrynkiv, A., Lysenko, S. et. al. (2019). Realization of the logistic approach in the international cargo delivery system. Communication – Scientific Letters of the University of Zilina, 21 (2), 3–12.

Gritsenko, A. V., Zadorozhnaya, E. A., Shepelev, V. D. (2018). Diagnostics of Friction Bearings by Oil Pressure Parameters During Cycle-By-Cycle Loading. Tribology in Industry, 40 (2), 300–310. doi: https://doi.org/10.24874/ti.2018.40.02.13

Aulin, V. V., Chernovol, M. I., Pankov, A. O., Zamota, T. M., Panayotov, K. K. (2017). Sowing machines and systems based on the elements of fluidics. INMATEH - Agricultural Engineering, 53 (3), 21–28. Available at: https://www.scopus.com/record/display.uri?eid=2-s2.0-85039172369&origin=inward&txGid=6e0c8378e2a117b0cf9e123c55056a13

Ratnam, C., Jasmin, N. M., Rao, V. V., Rao, K. V. (2018). A comparative experimental study on fault diagnosis of rolling element bearing using acoustic emission and soft computing techniques. Tribology in Industry, 40 (3), 501–513. doi: https://doi.org/10.24874/ti.2018.40.03.15

Lutsak, D., Prysyazhnyuk, P., Burda, M., Aulin, V. (2016). Development of a method and an apparatus for tribotechnical tests of materials under loose abrasive friction. Eastern-European Journal of Enterprise Technologies, 5 (7 (83)), 19–26. doi: https://doi.org/10.15587/1729-4061.2016.79913

Fedorov, S. V. (2018). Nano-Structural Standard of Friction and Wear. Tribology in Industry, 40 (2), 225–238. doi: https://doi.org/10.24874/ti.2018.40.02.06

Painuly, A., Arora, A. (2019). Rayleigh wave at composite porous half space saturated by two immiscible fluids. Applied Mathematical Modelling, 73, 124–135. doi: https://doi.org/10.1016/j.apm.2019.03.038



How to Cite

Aulin, V., Hrynkiv, A., Lysenko, S., Dykha, A., Zamota, T., & Dzyura, V. (2019). Exploring a possibility to control the stressed­strained state of cylinder liners in diesel engines by the tribotechnology of alignment. Eastern-European Journal of Enterprise Technologies, 3(12 (99), 6–16. https://doi.org/10.15587/1729-4061.2019.171619



Materials Science