Determining features of application of functional electrochemical coatings in technologies of surface treatment

Authors

DOI:

https://doi.org/10.15587/1729-4061.2019.171787

Keywords:

surface treatment, electrochemical coating, functional properties, repair

Abstract

Approaches to the use of electrochemical coatings in surface treatment technologies are analyzed. It is shown that directed surface modification allows expanding the functional properties of the treated material, in particular, increasing the strength, wear resistance, corrosion resistance, catalytic activity.

The method for treating non-alloy steel and cast irons by forming thin-film coatings of ternary alloys of iron and cobalt with molybdenum and tungsten is proposed. It is shown that the incorporation of refractory metals up to 37 at. % into the surface layer leads to a change in the phase structure of the coating. This is found to provide an increase in wear resistance by 40 %, microhardness by 2.5–3.5 times, as well as a decrease in friction coefficient by 3–4 times in comparison with the substrate material. The resulting materials can be used for hardening and protection of surfaces in various industries.

To modify the surface of piston silumins, it is proposed to use the method of plasma electrolytic oxidizing with the formation of ceramic-like coatings. It is shown that in the galvanostatic mode, from alkaline electrolyte solutions containing manganese and cobalt salts, it is possible to obtain uniform, dense, highly adhesive to the base metal, oxide coatings, doped with catalytic components whose content varies within 25–35 at. %. It is shown that the morphology and phase structure of the surface layers changes with the incorporation of dopant metals. The formed coatings have a high degree of surface development, which is a prerequisite for enhancing their functional properties. The proposed approach is used to modify the surface of the KamAZ-740 piston. It is found that the use of ceramic-like coatings of the engine piston leads to a decrease in hourly fuel consumption and amount of toxic substances with exhaust gases, which makes them promising for use in in-cylinder catalysis.

Author Biographies

Ann Karakurkchi, National Technical University «Kharkіv Polytechnic Institute» Kyrpychova str., 2, Kharkiv, Ukraine, 61002

PhD, Senior Researcher

Department of General and Inorganic Chemistry

Mykola Sakhnenko, National Technical University «Kharkіv Polytechnic Institute» Kyrpychova str., 2, Kharkiv, Ukraine, 61002

Doctor of Technical Sciences, Professor, Head of Department

Department of Physical Chemistry

Maryna Ved’, National Technical University «Kharkіv Polytechnic Institute» Kyrpychova str., 2, Kharkiv, Ukraine, 61002

Doctor of Technical Sciences, Professor

Department of General and Inorganic Chemistry

Iryna Yermolenko, National Technical University «Kharkіv Polytechnic Institute» Kyrpychova str., 2, Kharkiv, Ukraine, 61002

Doctor of Technical Sciences, Senior Researcher

Research Laboratory

Sergey Pavlenko, National Academy of the National Guard of Ukraine Zakhysnykiv Ukrainy sq., 3, Kharkiv, Ukraine, 61001

PhD, Associate Professor

Department of Technical and Logistics

Vadym Yevsieiev, National Academy of the National Guard of Ukraine Zakhysnykiv Ukrainy sq., 3, Kharkiv, Ukraine, 61001

PhD, Deputy Head of Department

Department of Special Tactics Preparation

Yaroslav Pavlov, National Academy of the National Guard of Ukraine Zakhysnykiv Ukrainy sq., 3, Kharkiv, Ukraine, 61001

PhD, Deputy Head of Faculty

Faculty of Logistics

Vladislav Yemanov, National Academy of the National Guard of Ukraine Zakhysnykiv Ukrainy sq., 3, Kharkiv, Ukraine, 61001

PhD, Head of Faculty

Faculty of Logistics

References

  1. Suslov, A. G., Bezyazychniy, V. F., Panfilov, Yu. V., Bishutin, S. G. (2008). Inzheneriya poverhnosti detaley. Moscow: Mashinostroenie, 320.
  2. Kolmykov, D. V., Goncharov, A. N. (2012). Kombinirovannye metody uprochneniya. Visnyk Sumskoho natsionalnoho ahrarnoho universytetu, 6 (24), 46–50.
  3. Meille, V. (2006). Review on methods to deposit catalysts on structured surfaces. Applied Catalysis A: General, 315, 1–17. doi: https://doi.org/10.1016/j.apcata.2006.08.031
  4. Rudnev, V. S., Lukiyanchuk, I. V., Vasilyeva, M. S., Medkov, M. A., Adigamova, M. V., Sergienko, V. I. (2016). Aluminum- and titanium-supported plasma electrolytic multicomponent coatings with magnetic, catalytic, biocide or biocompatible properties. Surface and Coatings Technology, 307, 1219–1235. doi: https://doi.org/10.1016/j.surfcoat.2016.07.060
  5. Sahnenko, N. D., Ved', M. V., Mayba, M. V. (2015). Konversionnye i kompozitsionnye pokrytiya na splavah titana. Kharkiv: NTU «KhPI», 176.
  6. Karakurkchi, A. V., Ved', M. V., Sahnenko, N. D., Zyubanova, S. I., Ermolenko, I. Yu. (2014). Elektroosazhdenie dvoynyh i troynyh splavov zheleza iz tsitratnyh elektrolitov. Nanotekhnologii: nauka i proizvodstvo, 3 (30), 24–27.
  7. Sakhnenko, N. D., Ved', M. V., Karakurkchy, A. V., Ermolenko, I. Yu., Zubanova, S. I. (2013). Resaursesaving technology for wear machine elements restoration. Intehrovani tekhnolohiyi ta resursozberezhennia, 2, 9–13.
  8. MIL-STD-1501D. Finishes, Coatings, And Sealants, for the Protection of Aerospace Weapons Systems (2005). Department of Defense Standard Practice, 14.
  9. Zunino, J., Battista, L., Colon, N. (2005). U.S. Army Development of Active Smart Coatings™ System for Military Vehicles. NSTI-Nanotech, 3, 387–390.
  10. Tsyntsaru, N., Dikusar, A., Cesiulis, H., Celis, J.-P., Bobanova, Z., Sidel’nikova, S. et. al. (2009). Tribological and corrosive characteristics of electrochemical coatings based on cobalt and iron superalloys. Powder Metallurgy and Metal Ceramics, 48 (7-8), 419–428. doi: https://doi.org/10.1007/s11106-009-9150-7
  11. Ved’, M. V., Sakhnenko, N. D., Karakurkchi, A. V., Yermolenko, I. Yu. (2015). Electroplating and functional properties of Fe-Mo and Fe-Mo-W coatings. Issues of Chemistry and Chemical Technology, 5-6, 53–60.
  12. Cesiulis, H., Donten, M., Donten, M. L., Stojek, Z. (2001). Electrodeposition of Ni-W, Ni-Mo and Ni-Mo-W Alloys from Pyrophosphate Baths. Materials Science (Medziagotyra), 7 (4), 237–241.
  13. Podlaha-Murphy, E. J. (2013). Electrodeposition of Ni-Fe-Mo-W Alloys. 1st Quarterly Report. AESF Research Project #R-117. NASF Surface Technology White Papers, 77 (12), 11–17. doi: http://doi.org/10.13140/RG.2.2.10596.27529
  14. Podlaha-Murphy, E. J. (2013). Electrodeposition of Ni-Fe-Mo-W Alloys. 2nd Quarterly Report. AESF Research Project #R-117. NASF Surface Technology White Papers, 77 (12), 18–27. doi: http://doi.org/10.13140/RG.2.2.11435.13602
  15. Podlaha, E. J. (1997). Induced Codeposition. Journal of The Electrochemical Society, 144 (5), 1672–1680. doi: https://doi.org/10.1149/1.1837658
  16. Podlaha-Murphy, E. J., Kola, A. (2014). Electrodeposition of Ni-Fe-Mo-W Alloys. 4th thru 6th Quarterly Reports October. AESF Research Project #R-117. NASF Surface Technology White Papers, 79 (2), 1–14. doi: http://doi.org/10.13140/RG.2.2.24273.63847
  17. Sun, S., Bairachna, T., Podlaha, E. J. (2013). Induced Codeposition Behavior of Electrodeposited NiMoW Alloys. Journal of The Electrochemical Society, 160 (10), D434–D440. doi: https://doi.org/10.1149/2.014310jes
  18. Nabiyouni, G., Saeidi, Sh., Kazeminezhad, I. (2012). Magnetic and nanostructural characteristics of electrodeposited supermalloy (Ni-Fe-Mo) thin films. Research and Reviews in Materials Science and Chemistry, 1 (1), 1–14.
  19. He, F.-J., Lei, J.-T., Lu, X., Huang, Y.-N. (2004). Friction and wear behavior of electrodeposited amorphous Fe-Co-W alloy deposits. Transactions of Nonferrous Metals Society of China, 14 (5), 901–906.
  20. Letov, S. S., Serebrovskiy, V. V., Afanas'ev, E. A., Molodkin, A. Yu., Stepashov, R. V. (2011). Primenenie elektroosazhdennyh binarnyh pokrytiy na osnove zheleza dlya uprochneniya i vosstanovleniya detaley mashin. Instrument i tekhnologi, 34, 26–32.
  21. Gadalov, V. N., Safonov, S. V., Serebrovsky, V. I., Skripkina, J. V., Goretsky, V. V. (2013). Machine-building renovation and agricultural machinery galvanic zhelezohromistymi coatings using cementation. Vestnik Voronezhskogo gosudarstvennogo tekhnicheskogo universiteta.
  22. Gupta, P., Tenhundfeld, G., Daigle, E. O., Ryabkov, D. (2007). Electrolytic plasma technology: Science and engineering – An overview. Surface and Coatings Technology, 201 (21), 8746–8760. doi: https://doi.org/10.1016/j.surfcoat.2006.11.023
  23. Dong, H. (Ed.) (2010). Surface Engineering of Light Alloys: Aluminium, Magnesium and Titanium Alloys. Elsevier, 680.
  24. Goodman, J. (2008). Nikasil and Alusil. Engine Professional, 18–22.
  25. Krug, P., Kennedy, M., Foss, J. (2006). New Aluminum Alloys for Cylinder Liner Applications. SAE Technical Paper Series. doi: https://doi.org/10.4271/2006-01-0983
  26. Alusul – Cylinder Blocks for the new AUDI V6 and V8 SI Engines. KS Aluminium Technologie AG. Germany, Neckarsulm: Kolbenschmidt Pierburg Group.
  27. Krishtal, M. M., Yasnikov, I. S., Ivashin, P. V., Polunin, A. V. (2012). The application of technology microarc oxidation to repair and restore characteristics of products from aluminum alloy AK9. Vestnik Samarskogo Universiteta. Aerokosmicheskaya Tekhnika, Tekhnologii i Mashinostroenie, 3 (34), 225–228.
  28. Krishtal, M. M., Ivashin, P. V., Kolomiets, P. V. (2010). Micro arc oxidation technology usage for ice with aluminium cilinder block designing. Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk, 12 (4), 242–246.
  29. Butusov, I., Dudareva, N. (2013). Influence of micro-arc oxidation on durability of IC-engine’s piston. Science and Education of the Bauman MSTU, 9, 127–144. doi: https://doi.org/10.7463/0913.0606017
  30. Stepanov, V. A. (2014). Uluchshenie ekspluatatsionnyh pokazateley avtomobiley mikrodugovym oksidirovaniem dnisch porshney dvigateley. Science and world, 1 (5), 115–117.
  31. Marchenko, A. P., Shpakovskiy, V. V. (2011). Vliyanie korundovogo sloya na rabochih poverhnostyah porshney na protsess sgoraniya v DVS. Dvigateli vnutrennego sgoraniya, 2, 24–28.
  32. Marchenko, A. P., Shpakovskyi, V. V., Pylov, V. V. (2013). Pidvyshchennia ekonomichnosti benzynovoho dvyhuna na riznykh rezhymakh roboty pry zastosuvanni chastkovo-dynamichnoi teploizoliatsiyi porshniv. Visnyk Natsionalnoho tekhnichnoho universytetu "KhPI". Ser.: Transportne mashynobuduvannia, 32, 106–110.
  33. Karakurkchi, A. V. (2015). Functional properties of multicomponent galvanic alloys of iron with molybdenum and tungsten. Functional materials, 22 (2), 181–187. doi: https://doi.org/10.15407/fm22.02.181
  34. Karakurkchi, A. V., Ved’, M. V., Yermolenko, I. Y., Sakhnenko, N. D. (2016). Electrochemical deposition of Fe–Mo–W alloy coatings from citrate electrolyte. Surface Engineering and Applied Electrochemistry, 52 (1), 43–49. doi: https://doi.org/10.3103/s1068375516010087
  35. Ved’, M. V., Sakhnenko, M. D., Karakurkchi, H. V., Ermolenko, I. Y., Fomina, L. P. (2016). Functional Properties of Fe−Mo and Fe−Mo−W Galvanic Alloys. Materials Science, 51 (5), 701–710. doi: https://doi.org/10.1007/s11003-016-9893-5
  36. Sakhnenko, N., Ved, M., Karakurkchi, A., Galak, A. (2016). A study of synthesis and properties of manganese-containing oxide coatings on alloy VT1-0. Eastern-European Journal of Enterprise Technologies, 3 (5 (81)), 37–43. doi: https://doi.org/10.15587/1729-4061.2016.69390
  37. Sakhnenko, N. D., Ved, M. V., Bykanova, V. V. (2014). Characterization and photocatalytic activity of Ti/TinOm∙ZrxOy coatings for azo-dye degradation. Functional materials, 21 (4), 492–497. doi: https://doi.org/10.15407/fm21.04.492
  38. Sakhnenko, M., Karakurkchi, A., Galak, A., Menshov, S., Matykin, O. (2017). Examining the formation and properties of TiO2 oxide coatings with metals of iron triad. Eastern-European Journal of Enterprise Technologies, 2 (11 (86)), 4–10. doi: https://doi.org/10.15587/1729-4061.2017.97550
  39. Yar-Mukhamedova, G. S., Ved’, M. V., Karakurkchi, A. V., Sakhnenko, N. D. (2017). Mixed alumina and cobalt containing plasma electrolytic oxide coatings. IOP Conference Series: Materials Science and Engineering, 213, 012020. doi: https://doi.org/10.1088/1757-899x/213/1/012020
  40. Karakurkchi, A., Sakhnenko, M., Ved, M., Galak, A., Petrukhin, S. (2017). Application of oxide-metallic catalysts on valve metals for ecological catalysis. Eastern-European Journal of Enterprise Technologies, 5 (10 (89)), 12–18. doi: https://doi.org/10.15587/1729-4061.2017.109885
  41. Ved’, M. V., Sakhnenko, N. D., Yermolenko, I. Y., Nenastina, T. A. (2018). Nanostructured Functional Coatings of Iron Family Metals with Refractory Elements. Springer Proceedings in Physics, 3–34. doi: https://doi.org/10.1007/978-3-319-92567-7_1
  42. Yermolenko, I. Y., Ved`, M. V., Sakhnenko, N. D., Sachanova, Y. I. (2017). Composition, Morphology, and Topography of Galvanic Coatings Fe-Co-W and Fe-Co-Mo. Nanoscale Research Letters, 12 (1). doi: https://doi.org/10.1186/s11671-017-2128-3
  43. Dudareva, N. Y., Abramova, M. M. (2016). The Structure of Plasma-Electrolytic Coating Formed on Al–Si alloys by the Micro-Arc Oxidation Method. Protection of Metals and Physical Chemistry of Surfaces, 52 (1), 128–132. doi: https://doi.org/10.1134/s2070205116010093
  44. Vasilyeva, M. S., Rudnev, V. S., Ustinov, A. Y., Korotenko, I. A., Modin, E. B., Voitenko, O. V. (2010). Cobalt-containing oxide layers on titanium, their composition, morphology, and catalytic activity in CO oxidation. Applied Surface Science, 257 (4), 1239–1246. doi: https://doi.org/10.1016/j.apsusc.2010.08.031
  45. Krishtal, M. M. (2008). Oxide Layer Formation by Micro-Arc Oxidation on Structurally Modified Al-Si Alloys and Applications for Large-Sized Articles Manufacturing. Advanced Materials Research, 59, 204–208. doi: https://doi.org/10.4028/www.scientific.net/amr.59.204
  46. Parsadanov, I. V., Sakhnenko, N. D., Ved’, M. V., Rykova, I. V., Khyzhniak, V. A., Karakurkchi, A. V., Gorokhivskiy, A. S. (2017). Increasing the efficiency of intra-cylinder catalysis in diesel engines. Voprosy Khimii i Khimicheskoi Tekhnologii, 6, 75–81.
  47. Lukiyanchuk, I. V., Rudnev, V. S., Tyrina, L. M. (2016). Plasma electrolytic oxide layers as promising systems for catalysis. Surface and Coatings Technology, 307, 1183–1193. doi: https://doi.org/10.1016/j.surfcoat.2016.06.076

Downloads

Published

2019-06-27

How to Cite

Karakurkchi, A., Sakhnenko, M., Ved’, M., Yermolenko, I., Pavlenko, S., Yevsieiev, V., Pavlov, Y., & Yemanov, V. (2019). Determining features of application of functional electrochemical coatings in technologies of surface treatment. Eastern-European Journal of Enterprise Technologies, 3(12 (99), 29–38. https://doi.org/10.15587/1729-4061.2019.171787

Issue

Section

Materials Science