Investigation of multiple contact interaction of elements of shearing dies

Authors

DOI:

https://doi.org/10.15587/1729-4061.2019.174086

Keywords:

contact interaction, shearing die, stress-strain state, contact pressure

Abstract

When justifying the design parameters, it is necessary to carry out the analysis of the strain-strain state of individual elements of technological systems, which are sets of parts under contact interaction conditions. These problems are nonlinear, and the principle of superposition does not apply to them. For this reason, the amount of calculations increases dramatically. To overcome this drawback, methods and models for the rapid and precise study of the strain-strain state of complex objects, taking into account contact interaction are developed. The feature of the problem statement is that the solution of contact problems under certain conditions linearly depends on the load. The patterns of contact pressure distribution are determined. It is concentrated in the areas of constant shape and size. Only the scale of contact pressure distribution varies.

This gives an opportunity to significantly accelerate design studies of die tooling while preserving the accuracy of numerical modeling of the stress-strain state.

The developed approach involves a combination of advantages of numerical and analytical models and methods for analyzing the stress-strain state of elements of shearing dies, taking into account contact interaction. This concerns the possibility to solve problems for a system of complex-shaped contacting bodies, which is impossible with the use of analytical models. On the other hand, the possibility of scaling the solutions of these problems with the stamping force is substantiated, which is generally not performed for nonlinear contact problems. So, it is sufficient to solve the problem of determining the strain-strain state of elements of such a shearing die. For the other value of stamping force, the proportionality rule is applied. Thus, the efficiency of research sharply increases and high accuracy of the obtained results is ensured.

Author Biographies

Mykola M. Tkachuk, National Technical University «Kharkіv Polytechnic Institute» Kyrpychova str., 2, Kharkiv, Ukraine, 61002

PhD, Senior Researcher

Department of Theory and Systems of Automated Design of Mechanisms and Machines

Andriy Grabovskiy, National Technical University «Kharkіv Polytechnic Institute» Kyrpychova str., 2, Kharkiv, Ukraine, 61002

PhD, Senior Researcher

Department of Theory and Computer-Aided Design of Mechanisms and Machines

Mykola Tkachuk A., National Technical University «Kharkіv Polytechnic Institute» Kyrpychova str., 2, Kharkiv, Ukraine, 61002

Doctor of Technical Sciences, Professor

Department of Theory and Computer-Aided Design of Mechanisms and Machines

Iryna Hrechka, National Technical University «Kharkіv Polytechnic Institute» Kyrpychova str., 2, Kharkiv, Ukraine, 61002

PhD, Associate Professor

Department of Theory and Computer-Aided Design of Mechanisms and Machines

Olga Ishchenko, Dmytro Motornyi Tavria State Agrotechnological University B. Khmelnytskoho аve., 18, Melitopol, Ukraine, 72310

Senior Lecturer

Department of Mathematics and Physics

Natalia Domina, Dmytro Motornyi Tavria State Agrotechnological University B. Khmelnytskoho аve., 18, Melitopol, Ukraine, 72310

PhD, Associate Professor

Department of Mathematics and Physics

References

  1. Johnson, K. L. (1985). Contact Mechanics. Cambridge University Press, 462. doi: https://doi.org/10.1017/cbo9781139171731
  2. Zayarnenko, E. I., Tkachuk, N. A., Tkachuk, A. V. (1990). Raschety na prochnost' vyrubnyh matrits i puanson-matrits dlya listovoy shtampovki. Kuznechno-shtampovochnoe proizvodstvo, 12, 18–21.
  3. Martynyak, R. M., Slobodyan, B. S. (2009). Contact of elastic half spaces in the presence of an elliptic gap filled with liquid. Materials Science, 45 (1), 66–71. doi: https://doi.org/10.1007/s11003-009-9156-9
  4. Hlavacek, I., Haslinger, J., Necas, J., Lovisek, J. (1988). Solution of Variational Inequalities in Mechanics. Springer, 327. doi: https://doi.org/10.1007/978-1-4612-1048-1
  5. Kalker, J. J. (1977). Variational Principles of Contact Elastostatics. IMA Journal of Applied Mathematics, 20 (2), 199–219. doi: https://doi.org/10.1093/imamat/20.2.199
  6. Pohrt, R., Popov, V. L. (2013). Contact stiffness of randomly rough surfaces. Scientific Reports, 3 (1). doi: https://doi.org/10.1038/srep03293
  7. Slobodyan, B. S., Lyashenko, B. A., Malanchuk, N. I., Marchuk, V. E., Martynyak, R. M. (2016). Modeling of Contact Interaction of Periodically Textured Bodies with Regard for Frictional Slip. Journal of Mathematical Sciences, 215 (1), 110–120. doi: https://doi.org/10.1007/s10958-016-2826-x
  8. Popov, V. L., Pohrt, R., Li, Q. (2017). Strength of adhesive contacts: Influence of contact geometry and material gradients. Friction, 5 (3), 308–325. doi: https://doi.org/10.1007/s40544-017-0177-3
  9. Li, Q., Popov, V. L. (2018). Adhesive force of flat indenters with brush-structure. Facta Universitatis, Series: Mechanical Engineering, 16 (1), 1–8. doi: https://doi.org/10.22190/fume171220005l
  10. Pastewka, L., Robbins, M. O. (2016). Contact area of rough spheres: Large scale simulations and simple scaling laws. Applied Physics Letters, 108 (22), 221601. doi: https://doi.org/10.1063/1.4950802
  11. Zhao, J., Vollebregt, E. A. H., Oosterlee, C. W. (2016). Extending the BEM for elastic contact problems beyond the half-space approach. Mathematical Modelling and Analysis, 21 (1), 119–141. doi: https://doi.org/10.3846/13926292.2016.1138418
  12. Popov, V. L., Pohrt, R., Li, Q. (2017). Strength of adhesive contacts: Influence of contact geometry and material gradients. Friction, 5 (3), 308–325. doi: https://doi.org/10.1007/s40544-017-0177-3
  13. Ciavarella, M., Papangelo, A. (2017). A random process asperity model for adhesion between rough surfaces. Journal of Adhesion Science and Technology, 31 (22), 2445–2467. doi: https://doi.org/10.1080/01694243.2017.1304856
  14. Ciavarella, M., Papangelo, A. (2017). A modified form of Pastewka–Robbins criterion for adhesion. The Journal of Adhesion, 94 (2), 155–165. doi: https://doi.org/10.1080/00218464.2017.1292139
  15. Ciavarella, M. (2015). Adhesive rough contacts near complete contact. International Journal of Mechanical Sciences, 104, 104–111. doi: https://doi.org/10.1016/j.ijmecsci.2015.10.005
  16. Papangelo, A., Hoffmann, N., Ciavarella, M. (2017). Load-separation curves for the contact of self-affine rough surfaces. Scientific Reports, 7 (1). doi: https://doi.org/10.1038/s41598-017-07234-4
  17. Tkachuk, M. M., Skripchenko, N., Tkachuk, M. A., Grabovskiy, A. (2018). Numerical methods for contact analysis of complex-shaped bodies with account for non-linear interface layers. Eastern-European Journal of Enterprise Technologies, 5 (7 (95)), 22–31. doi: https://doi.org/10.15587/1729-4061.2018.143193
  18. Tkachuk, M. (2018). A numerical method for axisymmetric adhesive contact based on kalker’s variational principle. Eastern-European Journal of Enterprise Technologies, 3 (7 (93)), 34–41. doi: https://doi.org/10.15587/1729-4061.2018.132076
  19. Linder, C., Tkachuk, M., Miehe, C. (2011). A micromechanically motivated diffusion-based transient network model and its incorporation into finite rubber viscoelasticity. Journal of the Mechanics and Physics of Solids, 59 (10), 2134–2156. doi: https://doi.org/10.1016/j.jmps.2011.05.005
  20. Tkachuk, M., Linder, C. (2012). The maximal advance path constraint for the homogenization of materials with random network microstructure. Philosophical Magazine, 92 (22), 2779–2808. doi: https://doi.org/10.1080/14786435.2012.675090
  21. Pastewka, L., Prodanov, N., Lorenz, B., Müser, M. H., Robbins, M. O., Persson, B. N. J. (2013). Finite-size scaling in the interfacial stiffness of rough elastic contacts. Physical Review E, 87 (6). doi: https://doi.org/10.1103/physreve.87.062809
  22. Hu, F., Shi, G., Shi, Y. (2018). Constitutive model for full-range elasto-plastic behavior of structural steels with yield plateau: Formulation and implementation. Engineering Structures, 171, 1059–1070. doi: https://doi.org/10.1016/j.engstruct.2016.02.037
  23. Atroshenko, O., Bondarenko, O., Ustinenko, O., Tkachuk, M., Diomina, N. (2016). A numerical analysis of non–linear contact tasks for the system of plates with a bolted connection and a clearance in the fixture. Eastern-European Journal of Enterprise Technologies, 1 (7 (79)), 24–29. doi: https://doi.org/10.15587/1729-4061.2016.60087
  24. Atroshenko, O., Tkachuk, M. A., Martynenko, O., Tkachuk, M. M., Saverska, M., Hrechka, I., Khovanskyi, S. (2019). The study of multicomponent loading effect on thin­walled structures with bolted connections. Eastern-European Journal of Enterprise Technologies, 1 (7 (97)), 15–25. doi: https://doi.org/10.15587/1729-4061.2019.154378
  25. Hoang, V.-L., Jaspart, J.-P., Tran, X.-H., Demonceau, J.-F. (2015). Elastic behaviour of bolted connection between cylindrical steel structure and concrete foundation. Journal of Constructional Steel Research, 115, 131–147. doi: https://doi.org/10.1016/j.jcsr.2015.08.024
  26. Mohammed, H., Kennedy, J. B. (2009). Fatigue Resistance of Corrugated Steel Sheets Bolted Lap Joints under Flexture. Practice Periodical on Structural Design and Construction, 14 (4), 242–245. doi: https://doi.org/10.1061/(asce)sc.1943-5576.0000021
  27. Tang, G., Yin, L., Guo, X., Cui, J. (2015). Finite element analysis and experimental research on mechanical performance of bolt connections of corrugated steel plates. International Journal of Steel Structures, 15 (1), 193–204. doi: https://doi.org/10.1007/s13296-015-3014-4
  28. Tkachuk, М. А., Ishchenko, O. A., Diomina, N. A., Tkachuk, M. M., Grabovskiy, A. V., Shemanska, V. V., Vasilchenko, D. R. (2018). Contact interaction elements stamping tool. Visnyk NTU «KhPI», 41 (1317), 67–76.
  29. Tkachuk, M., Bondarenko, M., Grabovskiy, A., Sheychenko, R., Graborov, R., Posohov, V. et. al. (2018). Thin­walled structures: analysis of the stressed­strained state and parameter validation. Eastern-European Journal of Enterprise Technologies, 1 (7 (91)), 18–29. doi: https://doi.org/10.15587/1729-4061.2018.120547
  30. Vollebregt, E., Segal, G. (2014). Solving conformal wheel–rail rolling contact problems. Vehicle System Dynamics, 52 (sup1), 455–468. doi: https://doi.org/10.1080/00423114.2014.906634
  31. Tarasov, A. F., Korotkiy, S. A. (2010). Modelling of dividing operations on the basis of degree material’s plasticity resource use estimation in the environment of finite-element analysis system ABAQUS. Novi materialy ta tekhnolohiyi v metalurhiyi ta mashynobuduvanni, 1, 114–117.
  32. Movshovich, I. Ya., Frolov, E. A., Bondar', O. V. et. al. (2013). Issledovanie parametrov tochnosti sborki universal'no-sbornoy perenalazhivaemoy osnastki. Kuznechno-shtampovochnoe proizvodstvo. Obrabotka materialov davleniem, 5, 17–21.
  33. Oujebbour, F.-Z., Habbal, A., Ellaia, R., Zhao, Z. (2014). Multicriteria shape design of a sheet contour in stamping. Journal of Computational Design and Engineering, 1 (3), 187–193. doi: https://doi.org/10.7315/jcde.2014.018
  34. Washizu, K. (1982). Variational Methods in Elasticity & Plasticity. Oxford–New York. Pergamon Press, 630.
  35. Ishchenko, O., Tkachuk, М., Grabovskіy, A., Tkachuk, М., Skripchenko, N., Meretska, K. (2018). Contact interaction of elements separate stamps: models, legislation, criteria of design solutions. Mekhanika ta mashynobuduvannia, 1, 47–59.

Downloads

Published

2019-07-24

How to Cite

Tkachuk, M. M., Grabovskiy, A., Tkachuk A., M., Hrechka, I., Ishchenko, O., & Domina, N. (2019). Investigation of multiple contact interaction of elements of shearing dies. Eastern-European Journal of Enterprise Technologies, 4(7 (100), 6–15. https://doi.org/10.15587/1729-4061.2019.174086

Issue

Section

Applied mechanics