DOI: https://doi.org/10.15587/1729-4061.2019.174476

Investigating the strength and deformability of the node that connects precast slabs and monolithic joists in a flat precast-monolithic flooring slab

Olena Butska, Tetiana Nikiforova, Mykola Makhinko, Svitlana Shekhorkina

Abstract


The paper reports a study into the strength and deformability of the node that connects precast slabs and monolithic flooring joists in a flat precast monolithic floor based on the work of dowel pins. Current regulations for the design of reinforced concrete structures do not take into consideration the calculation of nodes that connect precast-monolithic structures in flat floors using dowel pins.

We have devised a procedure of experimental research that accounts for the specificity in the operation of a precast slab that forms a floor’s part. It was established that a change in the type of supports changes parameters for the stressed-strained state of samples of a precast monolithic floor slab: relative deformations of concrete, deformations of samples, as well as strength.

Testing the samples of a precast monolithic floor slab has demonstrated reliable operation of both the junction and the normal cross-section of the slab. It was determined that the node that connects precast multi-hollow slabs and a monolithic flooring joist using dowel pins has a 1.42-fold strength margin.

The paper reports results from field testing a fragment of the frame of a building for the influence of vertical loads. It is shown that the development of deformations in the main bearing elements of a floor slab occurred almost in line with a linear dependence; they amounted to 18.55 mm (for the central precast slab of a floor slab’s center) and 14.64 mm (for the bearing flooring joist). These deformations are more than 2 times less than the permissible value for vertical deformations (deflection) for these elements, which is equal to 40 mm.

The results from field testing have led to a conclusion on that the precast and monolithic elements in the floor slab’s disk operate as a solid structure. The tests did not detect any mutual displacements of the side ends of precast slabs relative to the load-bearing flooring joists.

The procedure for calculating the strength of the connecting node has been improved. A change in the strength of samples of a flat precast monolithic floor slab is accounted for by the introduction of an appropriate coefficient for the operation conditions of transverse reinforcement, which is equal to 0.8.


Keywords


precast monolithic floor slab; flat flooring slab; keyed joint; structural strength of flooring slab

References


Ayrapetov, G. A., Bretshnayder, B. A. (1996). Stroitel'stvo v Germanii. Moscow, 283.

Bayshev, Yu. P., Plohih, V. I. (2007). Povyshenie effektivnosti zhelezobetonnyh perekrytiy zdaniy. Stroitel'nye materialy, oborudovanie tekhnologii XXI veka, 4, 20–22.

Aı̈tcin, P.-C. (2000). Cements of yesterday and today. Cement and Concrete Research, 30 (9), 1349–1359. doi: https://doi.org/10.1016/s0008-8846(00)00365-3

Hadi, M. N., Sharafi, P. Teh, L. H. (2012). A new formulation for the geometric layout optimisation of flat slab floor systems. Australasian Structural Engineering Conference (ASEC 2012). Australia: Engineers Australia. Available at: https://ro.uow.edu.au/cgi/viewcontent.cgi?referer=&httpsredir=1&article=3014&context=eispapers

Bangash, M. Y. H. (1992). Structural details in concrete. Oxford, Blackwell scientific publications, 107–115.

McCormac, J. С., Nelson, J. K. (2005). Design of Reinforced concrete. Wiley, 81–100.

Gluhovskiy, A. D. (1956). Zhelezobetonnye bezbalochnye perekrytiya dlya mnogoetazhnyh zdaniy. Moscow, 3–10.

Patil, K. S., Gore, N. G., Salunke, P. J. (2014). Minimum Cost Design of Reinforced Concrete Flat Slab. International Journal of Recent Technology and Engineering (IJRTE), 2 (6), 78–80.

Pavlikov, A. M., Harkava, O. V., Bezrukavyi, D. V. (2013). Vprovadzhennia bezryhelno-bezkapitelnoi karkasnoi konstruktyvnoi systemy v proektuvannia budivel pid sotsialne zhytlo. Resursoekonomni materialy, konstruktsiyi, budivli ta sporudy, 27, 352–359.

Chen, W., Richard Liew, J. (Eds.) (2002). The Civil Engineering Handbook. CRC Press, 2904. doi: https://doi.org/10.1201/9781420041217

Pessiki, S., Prior, R., Sause, R., Slaughter, S. (1995). Review of Existing Precast Concrete Gravity Load Floor Framing Systems. PCI Journal, 40 (2), 52–68. doi: https://doi.org/10.15554/pcij.03011995.52.68

Huselytsia, A. P., Shandruk, P. P. (2002). Kostruktsiyi bahatopoverkhovykh karkasnykh budynkiv ta yikh rozrakhunkiv. KNUBA. Kyiv, 72.

Semchenkov, A. S. (2008). Obosnovanie regional'no-adaptiruemoy industrial'noy universal'noy sistemy “RADIUSS”. Beton i zhelezobeton, 4, 2–6.

Chto takoe «KUB-2,5». Available at: http://zavod-zhbi.com.ua/tehnologiya-kub-2-5/chto-eto/

Moskalenko, M. (2010). Budynky, pobudovani za systemoiu KUB-2.5, zdatni zabezpechyty spozhyvachiv dostupnym i, holovne, yakisnym zhytlom. Vechirnia Poltava, 49 (929), 2.

Semchenkov A. S. (2010). Puti vyhoda sbornogo domostroeniya iz krizisna. ZhBI i konstruktsii, 2.

Markov, N. A., Soldatov, A. E. (1993). Primenenie karkasnyh zdaniy s natyazheniem armatury v postroechnyh usloviyah. Beton i zhelezobeton, 6, 19–20.

Mordich, A. I., Vigdorchik, R. I., Belevich, V. N. (2000). Mnogoetazhnye zdaniya po serii B1.020.1-7 so sborno-monolitnymi karkasami i ploskimi perekrytiyami iz mnogopustotnyh plit. Sovremennye arhitekturno-konstruktivnye sistemy zdaniy i sooruzheniy, novye stroitel'nye materialy i tekhnologii. Minsk, 3–22.

Mordich, A. I. (2008). Effektivnye sborno-monolitnye karkasnye konstruktsii zdaniy – osnova dlya dostupnogo i komfortnogo zhil'ya. Populyarnoe betonovedenie, 6, 96–100.

Mordich, A. I., Vigdorchik, R. I., Belevich, V. N., Ivaschenko, Yu. (1999). Unifitsirovannaya otkrytaya karkasnaya sistema zdaniy s ploskimi perekrytiyami, seriya B1.020.1-7. Arhitektura i stroitel'stvo, 6, 24–26.

Savytskyi, M. V., Butskaya, E. L. (2013). Durability and cost-effectiveness of precast and cast-in-situ deck. Techniczne nauki. Chemia i chemiczne technologie. Budownictwo i architektura. Przemysl: Nauka i studia, 35 (103), 77–83.

Savitskiy, N. V., Butskaya, E. L. (2010). Ploskoe zhelezobetonnoe sborno-monolitnoe perekrytie. Visnyk natsionalnoho universytetu «Lvivska politekhnika», 662, 323–327.

Savits'kiy, N. V., Butskaya, E. L., Chernets', V. A. (2011). Rezul'taty naturnih ispytaniy fragmenta sborno-monolitnogo perekrytiya. Stroitel'stvo, materialovedenie, mashinostroenie, 61, 382–387.

Savytskyi, M. V., Butska, O. L., Piradov, K. А., Kovtun-Gorbachova, T. A. (2015). Knot strength interface pre-slabs and monolithic beams precast and cast-in-situ deck. Stroitel'stvo. Materialovedenie. Mashinostroenie. Seriya: Sozdanie vysokotekhnologicheskih ekokompleksov v Ukraine na osnove kontseptsii sbalansirovannogo (ustoychivogo) razvitiya, 81, 185–190. Available at: http://smm.pgasa.dp.ua/article/view/56627/52826


GOST Style Citations








Copyright (c) 2019 Olena Butska, Tetiana Nikiforova, Mykola Makhinko, Svitlana Shekhorkina

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN (print) 1729-3774, ISSN (on-line) 1729-4061