Comparison of products of whey proteins concentrate proteolysis, obtained by different proteolytic preparations

Authors

DOI:

https://doi.org/10.15587/1729-4061.2019.177314

Keywords:

whey protein concentrate, proteolytic preparation, proteolysis, bioactive peptides, gel filtration, electrophoresis

Abstract

An important source of bioactive peptides is hydrolyzed products based on milk whey: hypoallergenic products, hydrolyzates for baby food, and products for athletes. However, in their production, proteolytic preparations of different origin are used. This may affect the degree of proteolysis of the biologically active peptides (BAP) proteins-precursors, the proteolysis products molecular weight distribution and, accordingly, the probability of BAP formation. A comparison of the degree of whey protein concentrate (WPC) proteins proteolysis and the molecular weight distribution of proteolysis products obtained by the action of proteolytic preparations of animal, plant and microbiological origin has been carried out. The following enzyme preparations were used for proteolysis: papain, neutral protease, trypsin, chymotrypsin and pancreatin. WPC was used as the substrate. The proteins fractional composition and the molecular weight distribution of proteins and peptides were characterized in it before the proteolysis. Proteolysis of 15 % WPC solution was carried out at a temperature of 37°C, pH 7.9 and enzyme: substrate ratio 1:20. During proteolysis, samples were periodically taken off for spectrophotometric determination of proteolysis products soluble in 5 % trichloroacetic acid (TCA). Molecular weight distribution of the resulting polypeptides and peptides was established by gel filtration of the reaction mixture after deposition of the unsplit proteins in 5 % TCA.

As a result of the research, it was found that the majority of proteolysis products were formed during the first 30–60 minutes. Proteolysis was mostly completed by 120 minutes. Gel filtration on Sephadex G-50 showed that hydrolysates differ by molecular weight distribution. The highest amount of low molecular weight peptides (M<1,500 Da) was obtained by the action of neutral protease (29 %) and pancreatin (25 %). The main precursor of BAP – β-lactoglobulin, according to the results of electrophoresis, showed the highest sensitivity to the action of neutral protease (79 %), pancreatin (81 %) and trypsin (71 %)

Author Biographies

Volodymyr Yukalo, Ternopil Ivan Puluj National Technical University Ruska str., 56, Ternopil, Ukraine, 46001

Doctor of Biological Sciences, Professor

Department of Food Biotechnology and Chemistry

Kateryna Datsyshyn, Ternopil Ivan Puluj National Technical University Ruska str., 56, Ternopil, Ukraine, 46001

Assistant

Department of Food Biotechnology and Chemistry

Liudmyla Storozh, Ternopil Ivan Puluj National Technical University Ruska str., 56, Ternopil, Ukraine, 46001

PhD

Department of Food Biotechnology and Chemistry

References

  1. Brandelli, A., Daroit, D. J., Corrêa, A. P. F. (2015). Whey as a source of peptides with remarkable biological activities. Food Research International, 73, 149–161. doi: https://doi.org/10.1016/j.foodres.2015.01.016
  2. Iukalo, A. V., Datsyshyn, K. Ye., Yukalo, V. G. (2013). Bioactive peptides of the cow milk whey proteins (Bos taurus). Biotechnologia Acta, 6 (5), 49–61. doi: https://doi.org/10.15407/biotech6.05.049
  3. Slyvka, I. M., Tsisaryk, O. Y., Dronyk, G. V., Musiy, L. Y. (2018). Strains of lactic acid bacteria isolated from traditional Carpathian cheeses. Regulatory Mechanisms in Biosystems, 9 (1), 62–68. doi: https://doi.org/10.15421/021808
  4. McSweeney, P. L. H., O’Mahony, J. A. (Eds.) (2016). Advanced Dairy Chemistry: Volume 1B: Proteins: Applied Aspects. Springer, 498. doi: https://doi.org/10.1007/978-1-4939-2800-2
  5. Królczyk, J., Dawidziuk, T., Janiszewska-Turak, E., Sołowiej, B. (2016). Use of Whey and Whey Preparations in the Food Industry – a Review. Polish Journal of Food and Nutrition Sciences, 66 (3), 157–165. doi: https://doi.org/10.1515/pjfns-2015-0052
  6. Kaprel'yants, L. V. (2009). Fermenty v pishchevyh tehnologiyah. Odessa: Druk, 468.
  7. Madureira, A. R., Tavares, T., Gomes, A. M. P., Pintado, M. E., Malcata, F. X. (2010). Invited review: Physiological properties of bioactive peptides obtained from whey proteins. Journal of Dairy Science, 93 (2), 437–455. doi: https://doi.org/10.3168/jds.2009-2566
  8. Abubakar, A., Saito, T., Kitazawa, H., Kawai, Y., Itoh, T. (1998). Structural Analysis of New Antihypertensive Peptides Derived from Cheese Whey Protein by Proteinase K Digestion. Journal of Dairy Science, 81 (12), 3131–3138. doi: https://doi.org/10.3168/jds.s0022-0302(98)75878-3
  9. Corrochano, A. R., Sariçay, Y., Arranz, E., Kelly, P. M., Buckin, V., Giblin, L. (2019). Comparison of antioxidant activities of bovine whey proteins before and after simulated gastrointestinal digestion. Journal of Dairy Science, 102 (1), 54–67. doi: https://doi.org/10.3168/jds.2018-14581
  10. Athira, S., Mann, B., Saini, P., Sharma, R., Kumar, R., Singh, A. K. (2014). Production and characterisation of whey protein hydrolysate having antioxidant activity from cheese whey. Journal of the Science of Food and Agriculture, 95 (14), 2908–2915. doi: https://doi.org/10.1002/jsfa.7032
  11. Silveira, S. T., Martínez-Maqueda, D., Recio, I., Hernández-Ledesma, B. (2013). Dipeptidyl peptidase-IV inhibitory peptides generated by tryptic hydrolysis of a whey protein concentrate rich in β-lactoglobulin. Food Chemistry, 141 (2), 1072–1077. doi: https://doi.org/10.1016/j.foodchem.2013.03.056
  12. Power-Grant, O., Bruen, C., Brennan, L., Giblin, L., Jakeman, P., FitzGerald, R. J. (2015). In vitro bioactive properties of intact and enzymatically hydrolysed whey protein: targeting the enteroinsular axis. Food & Function, 6 (3), 972–980. doi: https://doi.org/10.1039/c4fo00983e
  13. Turgeon, S. L., Rioux, L.-E. (2011). Food matrix impact on macronutrients nutritional properties. Food Hydrocolloids, 25 (8), 1915–1924. doi: https://doi.org/10.1016/j.foodhyd.2011.02.026
  14. Kruglik, V. I. (2007). Issledovanie kinetiki fermentativnogo gidroliza nativnyh molochnyh belkov. Syrodelie i maslodelie, 5, 35–36.
  15. Halavach, T. N., Kurchenko, V. P. (2012). Milk protein hydrolysis with enzyme preparation and proteolytic systems of lactic acid bacteria. Trudy BGU, 7, 106–126.
  16. Hramtsov, A. G. (2011). Fenomen molochnoy syvorotki. Sankt-Peterburg: Professiya, 804.
  17. Silvestre, M. P. C., da Silva, M. C., de Souza, M. W. S., Silva, V. D. M., de Aguiar, M. J. B., Silva, M. R. (2012). Hydrolysis degree, peptide profile and phenylalanine removal from whey protein concentrate hydrolysates obtained by various proteases. International Journal of Food Science & Technology, 48 (3), 588–595. doi: https://doi.org/10.1111/ijfs.12003
  18. Yukalo, V., Datsyshyn, K., Storozh, L. (2019). Obtaining of β-lactoglobulin by gel filtration of cow milk whey. EUREKA: Life Sciences, 2, 33–39. doi: https://doi.org/10.21303/2504-5695.2019.00859
  19. Polygalina, G. V., Cherednichenko, V. S., Rimareva, L. V. (2003). Opredelenie aktivnosti fermentov. Moscow: De Li print, 375.
  20. Yukalo, V., Datsyshyn, K., Storozh, L. (2019). Electrophoretic system for express analysis of whey protein fractions. Eastern-European Journal of Enterprise Technologies, 2 (11 (98)), 37–44. doi: https://doi.org/10.15587/1729-4061.2019.160186
  21. Yukalo, V. G., Yavorskyy, B. I., Storozh, L. A., Solovodzins’ka, I. Y. (2007). Quantitative eleсtrophoretic analysis of casein complex proteins. Biolohiya tvaryn, 9 (1-2), 269–272.
  22. Sharkova, N. O., Zhukotskyi, E. K., Avdieieva, L. Yu., Dekusha, H. V. (2013). Bilkovi hidrolizaty dlia kharchuvannia ditei rannoho viku. Naukovi pratsi Odeskoi natsionalnoi akademiyi kharchovykh tekhnolohiy, 2 (44), 250–252.
  23. Fox, P. F., Uniacke-Lowe, T., McSweeney, P. L. H., O’Mahony, J. A. (2015). Dairy Chemistry and Biochemistry. Springer, 584. doi: https://doi.org/10.1007/978-3-319-14892-2
  24. Abadía-García, L., Castaño-Tostado, E., Ozimek, L., Romero-Gómez, S., Ozuna, C., Amaya-Llano, S. L. (2016). Impact of ultrasound pretreatment on whey protein hydrolysis by vegetable proteases. Innovative Food Science & Emerging Technologies, 37, 84–90. doi: https://doi.org/10.1016/j.ifset.2016.08.010
  25. O’Loughlin, I. B., Murray, B. A., Kelly, P. M., FitzGerald, R. J., Brodkorb, A. (2012). Enzymatic Hydrolysis of Heat-Induced Aggregates of Whey Protein Isolate. Journal of Agricultural and Food Chemistry, 60 (19), 4895–4904. doi: https://doi.org/10.1021/jf205213n

Downloads

Published

2019-09-02

How to Cite

Yukalo, V., Datsyshyn, K., & Storozh, L. (2019). Comparison of products of whey proteins concentrate proteolysis, obtained by different proteolytic preparations. Eastern-European Journal of Enterprise Technologies, 5(11 (101), 40–47. https://doi.org/10.15587/1729-4061.2019.177314

Issue

Section

Technology and Equipment of Food Production