Effect of technological camber in the facets of a cellular filler on its physical and mechanical characteristics

Authors

DOI:

https://doi.org/10.15587/1729-4061.2019.179258

Keywords:

sandwich-type structures, cellular filler, physical-mechanical characteristics, technological camber of cell facets

Abstract

Among a variety of technological defects of a cellular filler affecting its physical and mechanical characteristics, one of the most essential is believed to be the initial technological camber of facets in its cell. The paper reports a study into the effect of technological camber of a cellular filler's facets on its physical-mechanical characteristics, which ensures the stabilization of its quality and, consequently, the operational characteristics of structures based on it. In contrast to available studies, we have considered a discrete-element cell model. A cellular filler has been represented in the form of a structure consisting of various elements: facets of a single foil, facets of two glued layers of foil, and imaginary edges – the angular butt joint zones of two neighboring facets. The process of consistent loss of bearing ability by the cell elements of a cellular filler under transverse compression and longitudinal shear has been investigated. This analysis of the performance of separate elements of a cell in the presence of the initial technological camber has made it possible to take into consideration the operational patterns of each of them by building the appropriate load-type chart of filler deformation. On this basis, we have devised an approach that makes it possible to predict the character of cellular filler operation taking into consideration the patterns in accepting the loading by separate elements of the honeycomb cell in the presence of the initial technological camber in them. Recommendations have been given for using the obtained results within the approaches, proposed in a series of studies, for optimizing cellular structures for the mass of design parameters. The recommendations enable the synthesis of a module for the verification optimization unit, which produces a conclusion on the carrying capacity of an optimal, in terms of mass, variant of the sandwich-type structure with a cellular filler, taking into consideration the presence in its facets of initial technological camber within the range of regulated tolerance. Such synthesis at the modern level of production technology of a cellular filler would help implement almost exhaustive capabilities of this type of the filler, as well as the structures based on it.

Author Biographies

Andrii Kondratiev, National Aerospace University Kharkiv Aviation Institute Chkalova str., 17, Kharkiv, Ukraine, 61070

Doctor of Technical Sciences, Associate Professor, Head of Department

Department of Rocket Design and Engineering

Tatiyna Nabokina, National Aerospace University Kharkiv Aviation Institute Chkalova str., 17, Kharkiv, Ukraine, 61070

PhD, Associate Professor

Department of Rocket Design and Engineering

References

  1. Nunes, J. P., Silva, J. F. (2016). Sandwiched composites in aerospace engineering. Advanced Composite Materials for Aerospace Engineering, 129–174. doi: https://doi.org/10.1016/b978-0-08-100037-3.00005-5
  2. Fomin, O., Gerlici, J., Lovskaya, A., Kravchenko, K., Prokopenko, P., Fomina, A., Hauser, V. (2018). Research of the strength of the bearing structure of the flat wagon body from round pipes during transportation on the railway ferry. MATEC Web of Conferences, 235, 00003. doi: https://doi.org/10.1051/matecconf/201823500003
  3. Panin, V. F., Gladkov, Yu. A. (1991). Konstruktsii s zapolnitelem. Moscow: Mashinostroenie, 272.
  4. Herrmann, A. S.; Virson, J. R. (Ed.) (1999). Design and Manufacture of Monolithic Sandwich Structures with Cellular Cares. Stockholm, 274.
  5. Dutton, S., Kelly, D., Baker, A. (2004). Composite Materials for Aircraft Structures. American Institute of Aeronautics and Astronautics Inc., Reston. Virginia, 599. doi: https://doi.org/10.2514/4.861680
  6. Slyvynskyi, V. I., Sanin, А. F., Kharchenko, М. Е., Kondratyev, А. V. (2014). Thermally and dimensionally stable structures of carbon-carbon laminated composites for space applications. Proceedings of the International Astronautical Congress, IAC 65. Toronto, Canada, 8, 5739–5751.
  7. Gaidachuk, V. E., Kondratiev, A. V., Chesnokov, A. V. (2017). Changes in the Thermal and Dimensional Stability of the Structure of a Polymer Composite After Carbonization. Mechanics of Composite Materials, 52 (6), 799–806. doi: https://doi.org/10.1007/s11029-017-9631-6
  8. Kondratiev, A., Gaidachuk, V. (2019). Weight-based optimization of sandwich shelled composite structures with a honeycomb filler. Eastern-European Journal of Enterprise Technologies, 1 (1 (97)), 24–33. doi: https://doi.org/10.15587/1729-4061.2019.154928
  9. Fomin, O., Gerlici, J., Lovska, A., Kravchenko, K., Prokopenko, P., Fomina, A., Hauser, V. (2019). Durability Determination of the Bearing Structure of an Open Freight Wagon Body Made of Round Pipes during its Transportation on the Railway Ferry. Communications-Scientific letters of the University of Zilina, 21 (1), 28–34.
  10. Ivanov, A. A., Kashin, S. M., Semenov, V. I. (2000). Novoe pokolenie sotovyh zapolniteley dlya aviatsionno-kosmicheskoy tehniki. Moscow: Energoatomizdat, 436.
  11. Slyvyns’kyy, V., Slyvyns’kyy, M., Polyakov, N. et. al. (2008). Scientific fundamentals of efficient adhesive joint in honeycomb structures for aerospace applications. 59th International Astronautical Congress 2008.
  12. Slyvyns’kyy, V., Gajdachuk, V., Kirichenko, V., Kondratiev, A. (2012). Basic parameters’ optimization concept for composite nose fairings of launchers. 62nd International Astronautical Congress, 9, 5701–5710.
  13. Kondratiev, A., Slivinsky, M. (2018). Method for determining the thickness of a binder layer at its non-uniform mass transfer inside the channel of a honeycomb filler made from polymeric paper. Eastern-European Journal of Enterprise Technologies, 6 (5 (96)), 42–48. doi: https://doi.org/10.15587/1729-4061.2018.150387
  14. Sypeck, D. J. (2005). Wrought aluminum truss core sandwich structures. Metallurgical and Materials Transactions B, 36 (1), 125–131. doi: https://doi.org/10.1007/s11663-005-0012-5
  15. Slyvynskyi, V. I., Аlyamovskyi, А. I., Kondratjev, А. V., Kharchenko, М. Е. (2012). Carbon honeycomb plastic as light-weight and durable structural material. 63th International Astronautical Congress, 8, 6519–6529.
  16. Gaydachuk, A. V., Slivinsky, M. V., Golovanevsky, V. A. (2006). Technological Defects Classification System for Sandwiched Honeycomb Composite Materials Structures. Materials Forum, 30, 96–102.
  17. Barabash, A. V., Gavril’chenko, E. Y., Gribkov, E. P., Markov, O. E. (2014). Straightening of sheet with correction of waviness. Steel in Translation, 44 (12), 916–920. doi: https://doi.org/10.3103/s096709121412002x
  18. Kondratiev, A., Gaidachuk, V., Nabokina, T., Kovalenko, V. (2019). Determination of the influence of deflections in the thickness of a composite material on its physical and mechanical properties with a local damage to its wholeness. Eastern-European Journal of Enterprise Technologies, 4 (1 (100)), 6–13. doi: https://doi.org/10.15587/1729-4061.2019.174025
  19. Wang, D., Bai, Z. (2015). Mechanical property of paper honeycomb structure under dynamic compression. Materials & Design, 77, 59–64. doi: https://doi.org/10.1016/j.matdes.2015.03.037
  20. Gritskiv, L. N. (2005). Ob opredelenii kriticheskih napryazheniy poteri ustoychivosti sotovogo zapolnitelya. Voprosy proektirovaniya i proizvodstva konstruktsiy letatel'nyh apparatov, 3 (42), 76–81.
  21. Birger, I. A., Panovko, Ya. G. (Eds.) (1968). Prochnost', ustoychivost', kolebaniya. Vol. 2. Moscow: Mashinostroenie, 463.
  22. Gaydachuk, V., Koloskova, G. (2016). Mathematical modeling of strength of honeycomb panel for packing and packaging with regard to deviations in the filler parameters. Eastern-European Journal of Enterprise Technologies, 6 (1 (84)), 37–43. doi: https://doi.org/10.15587/1729-4061.2016.85853
  23. Kondratiev, A., Prontsevych, O. (2018). Stabilization of physical-mechanical characteristics of honeycomb filler based on the adjustment of technological techniques for its fabrication. Eastern-European Journal of Enterprise Technologies, 5 (1 (95)), 71–77. doi: https://doi.org/10.15587/1729-4061.2018.143674
  24. Slivinsky, M., Slivinsky, V., Gajdachuk, V. et. al. (2004). New Possibilities of Creating Efficient Honeycomb Structures for Rockets and Spacrafts. 55th International Astronautical Congress of the International Astronautical Federation, the International Academy of Astronautics, and the International Institute of Space Law. doi: https://doi.org/10.2514/6.iac-04-i.3.a.10
  25. Slyvyns’kyy, V., Gajdachuk, V., Gajdachuk, А., Slyvyns’ka, N. (2005). Weight optimization of honeycomb structures for space applications. 56th International Astronautical Congress of the International Astronautical Federation, the International Academy of Astronautics, and the International Institute of Space Law. doi: https://doi.org/10.2514/6.iac-05-c2.3.07
  26. Slyvyns’kyy, V., Gajdachuk, A., Melnikov, S. M. et. al. (2007). Technological possibilities for increasing quality of honeycomb cores used in aerospace engineering. 58th International Astronautical Congress 2007 Hyderabad.
  27. Kondrat'ev, A. V., Gritskiv, L. N. (2007). Opredelenie modulya normal'noy uprugosti sotovogo zapolnitelya pri poperechnom szhatii s uchetom nachal'nogo tehnologicheskogo nesovershenstva fol'gi. Voprosy proektirovaniya i proizvodstva konstruktsiy letatel'nyh apparatov, 51 (4), 131–139.
  28. Gaydachuk, V. E., Kondrat'ev, A. V., Kirichenko, V. V., Slivinskiy, V. I. (2011). Optimal'noe proektirovanie kompozitnyh sotovyh konstruktsiy aviakosmicheskoy tehniki. Kharkiv: Nats. aehrokosm. un-t «Khark. aviats. in-t», 172.
  29. Mackerle, J. (2002). Finite element analyses of sandwich structures: a bibliography (1980–2001). Engineering Computations, 19 (2), 206–245. doi: https://doi.org/10.1108/02644400210419067
  30. Fomin, O., Logvinenko, O., Burlutsky, O., Rybin, A. (2018). Scientific Substantiation of Thermal Leveling for Deformations in the Car Structure. International Journal of Engineering & Technology, 7 (4.3), 125–129. doi: https://doi.org/10.14419/ijet.v7i4.3.19721
  31. Frulloni, E., Kenny, J. M., Conti, P., Torre, L. (2007). Experimental study and finite element analysis of the elastic instability of composite lattice structures for aeronautic applications. Composite Structures, 78 (4), 519–528. doi: https://doi.org/10.1016/j.compstruct.2005.11.013
  32. Slyvyns’kyy V., Slyvyns’kyy M. et. al. (2006). New concept for weight optimization of launcher nose firings made of honeycomb structures. 57th International Astronautical Congress. doi: https://doi.org/10.2514/6.iac-06-c2.p.1.11
  33. Kirichenko, V. V., Mel'nikov, S. M. (2006). Faktory, opredelyayushchie tehnologicheskuyu pogib' graney yacheek sotovogo zapolnitelya iz metallicheskoy fol'gi i vozmozhnosti ee normirovaniya. Voprosy proektirovaniya i proizvodstva konstruktsiy letatel'nyh apparatov, 2, 62–70.
  34. Timoshenko, S. P. (1971). Ustoychivost' cterzhney, plastin i obolochek. Moscow: Nauka, 807.
  35. Donnell, L. H. (1976). Beams Plates and Shells. McGraw-Hill, 453.
  36. Beer, F. P. (2009). Mechanics of materials. McGraw-Hill Higher Education, 782.
  37. Slivinskiy, V. I. (1996). Eksperimental'noe issledovanie fiziko-mehanicheskih harakteristik sotov. Voprosy proektirovaniya i proizvodstva konstruktsiy letatel'nyh apparatov, 30–43.

Downloads

Published

2019-09-30

How to Cite

Kondratiev, A., & Nabokina, T. (2019). Effect of technological camber in the facets of a cellular filler on its physical and mechanical characteristics. Eastern-European Journal of Enterprise Technologies, 5(7 (101), 6–18. https://doi.org/10.15587/1729-4061.2019.179258

Issue

Section

Applied mechanics