Development of the aeromagnetic space debris deorbiting system

Authors

  • Erik Lapkhanov Institute of Technical Mechanics of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine (ITM of NASU and SSAU) Leshko-Popelya str., 15, Dnipro, Ukraine, 49005, Ukraine https://orcid.org/0000-0003-3821-9254
  • Serhii Khoroshylov Institute of Technical Mechanics of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine (ITM of NASU and SSAU) Leshko-Popelya str., 15, Dnipro, Ukraine, 49005, Ukraine https://orcid.org/0000-0001-7648-4791

DOI:

https://doi.org/10.15587/1729-4061.2019.179382

Keywords:

aeromagnetic deorbiting system, permanent magnets, spacecraft, discrete control law

Abstract

The study has considered the possibility of creating an aeromagnetic system for removing space debris from low Earth orbits. The peculiarity of the design of the aeromagnetic deorbiting system is the use of magnetic controls for the relative position of the aerodynamic element with permanent rotary magnets that are shielded with the help of special screen capsules with shutters. It should be noted that this system is offered for aerodynamically unstable spacecraft. Besides, to analyse the performance and benefits of using permanent magnet aeromagnetic input systems, a corresponding discrete law is proposed to control the magnetic parts. The control of the relative position of the aerodynamic element in the orbital coordinate system is carried out in order to orient and stabilize it perpendicular to the dynamic incident atmospheric flow. A mathematical simulation has been performed for the orbital motion of a spacecraft during its removal with the help of a permanent magnet aeromagnetic system from different orbits. It has been determined that when stabilizing the aerodynamic element perpendicular to the vector of the incident dynamic atmospheric flow, the withdrawal time is reduced by 25 % compared with the non-oriented passive deorbiting. However, this advantage during the removal time is peculiar only to aerodynamic elements whose midsection area is much larger than a quarter of the total surface area. It is noteworthy that the design of aeromagnetic evacuation systems is only appropriate using aerodynamically deployable sail elements and is not effective at all for large inflatable elements.

Thus, the development of an aeromagnetic space debris removal system with permanent magnet controls extends the boundaries of effective use of aerodynamic sailing systems. The use of permanent magnet units provides a new direction for further research on the orientation of large-scale space systems with minimal fuel and onboard energy consumption

Author Biographies

Erik Lapkhanov, Institute of Technical Mechanics of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine (ITM of NASU and SSAU) Leshko-Popelya str., 15, Dnipro, Ukraine, 49005

Postgraduate student

Department of System Analysis and Control Problems

Serhii Khoroshylov, Institute of Technical Mechanics of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine (ITM of NASU and SSAU) Leshko-Popelya str., 15, Dnipro, Ukraine, 49005

Doctor of Technical Sciences, Senior Researcher, Leading Researcher

Department of System Analysis and Control Problems

References

  1. Orbital Debris Quarterly News (2019). National Aeronautics and Space Administration, 23 (1-2). Available at: https://orbitaldebris.jsc.nasa.gov/quarterly-news/pdfs/odqnv23i1.pdf
  2. Alpatov, A. P., Goldstein, Yu. M. (2017). Ballistic Analysis of Orbits Distribution of Spacecraft for Different Functional Missions. Technical Mechanics, 2, 33–40.
  3. Alpatov, A. P., Holdshtein, Yu. M. (2019). On the choice of the ballistic parameters of an on-orbit service spacecraft. Technical Mechanics, 1, 25–37. Available at: http://www.journal-itm.dp.ua/docs//P-03-01-2019.pdf
  4. Paliy, A. S. (2012). Metody i sredstva uvoda kosmicheskih apparatov s rabochih orbit (sostoyanie problemy). Technical Mechanics, 1, 94–102.
  5. Alpatov, A. P. (2012). Tehnogennoe zasorenie okolozemnogo kosmicheskogo prostranstva. Dnepropetrovsk: Porogi, 378.
  6. Alpatov, A. P., Khoroshylov, S. V., Maslova, A. I. (2019). Contactless de-orbiting of space debris by the ion beam. Dynamics and control. Kyiv: Akademperiodyka, 170. doi: https://doi.org/10.15407/akademperiodyka.383.170
  7. Pikalov, R. S., Yudintsev, V. V. (2018). Obzor i vybor sredstv uvoda krupnogabaritnogo kosmicheskogo musora. Trudy MAI, 100. Available at: http://trudymai.ru/upload/iblock/239/Pikalov_YUdintsev_rus.pdf?lang=ru&issue=100
  8. Dron, N. M., Horolsky, P. G., Dubovik, L. G. (2014). Ways of reduction of technogenic pollution of the near-earth space. Naukovyi Visnyk Natsionalnoho hirnychoho universytetu, 3, 125–130.
  9. Lapkhanov E. O. (2019). Features of the development of means for spacecraft removal from near-earth operational orbits. Technical Mechanics, 2, 16–29.
  10. Shuvalov, V. O., Paliy, O. S., Lapkhanov, E. O. (2018). Zaiavka na Pat. No. a201801742 UA. Sposib ochyshchennia navkolozemnoho prostoru vid obiektiv kosmichnoho smittia shliakhom vidvedennia yikh z orbity za dopomohoiu vlasnoho mahnitnoho polia. MPK B 64 G 1/62. No. a201801742; declareted: 21.02.2018.
  11. Shuvalov, V. A., Gorev, N. B., Tokmak, N. A., Pis’mennyi, N. I., Kochubei, G. S. (2018). Control of the drag on a spacecraft in the earth’s ionosphere using the spacecraft’s magnetic field. Acta Astronautica, 151, 717–725. doi: https://doi.org/10.1016/j.actaastro.2018.06.038
  12. Svorobin, D. S., Fokov, A. A., Khoroshylov, S. V. (2018). Feasibility analysis of aerodynamic compensator application in noncontact space debris removal. Aerospace technic and technology, 6, 4–11. doi: https://doi.org/10.32620/aktt.2018.6.01
  13. Underwood, C., Viquerat, A., Schenk, M., Taylor, B., Massimiani, C., Duke, R. et. al. (2019). InflateSail de-orbit flight demonstration results and follow-on drag-sail applications. Acta Astronautica, 162, 344–358. doi: https://doi.org/10.1016/j.actaastro.2019.05.054
  14. Trofimov, S. P. (2015). Deorbiting of low-earth orbit spacecraft using a sail for solar radiation pressure force augmentation. Preprint IPM im. M. V. Keldysha, 32. Available at: https://keldysh.ru/papers/2015/prep2015_32.pdf
  15. Harkness, P., McRobb, M., Lützkendorf, P., Milligan, R., Feeney, A., Clark, C. (2014). Development status of AEOLDOS – A deorbit module for small satellites. Advances in Space Research, 54 (1), 82–91. doi: https://doi.org/10.1016/j.asr.2014.03.022
  16. Anderson, J. L. NASA's Nanosail-D 'Sails' Home – Mission Complete. NASA. Available at: https://www.nasa.gov/mission_pages/smallsats/11-148.html
  17. Bernardi, F., Vignali, G. SSCD: Sailing System for Cubesat Deorbiting. Available at: http://www.unisec-global.org/ddc/pdf/1st/01_FedericoSailing_abst.pdf
  18. Paliy, O. S. (2017). Classification of aerodynamic systems for low Earth orbit space hardware deorbiting. Technical Mechanics, 4, 49–54.
  19. Dron’, M., Golubek, A., Dubovik, L., Dreus, A., Heti, K. (2019). Analysis of ballistic aspects in the combined method for removing space objects from the near­Earth orbits. Eastern-European Journal of Enterprise Technologies, 2 (5 (98)), 49–54. doi: https://doi.org/10.15587/1729-4061.2019.161778
  20. Dron, M., Dreus, A., Golubek, A., Abramovsky, Y. (2018). Investigation of aerodynamics heating of space debris object at reentry to earth atmosphere. 16th IAA Symposium on space debris, Bremen. IAC-18,A6,IP,39,×43826, 7.
  21. Pfisterer, M., Schillo, K., Valle, C., Lin, K.-C., Ham, C. The Development of a Propellantless Space Debris Mitigation Drag Sail for LEO Satellites. Available at: http://www.iiis.org/Chan.pdf
  22. Khoroshylov, S. V., Paliy, O. S., Lapkhanov, E. O. (2019). Zaiavka na Pat. na vynakhid No. a201907950 UA. Aeromahnitna systema vidvedennia obiektiv kosmichnoho smittia z nyzkykh navkolozemnykh orbit z mahnitnymy orhanamy keruvannia. MPK B 64 G 1/62. No. a201907950, declareted: 11.07.2019.
  23. Dmitrenko, V. V., Nyunt, P. W., Vlasik, K. F., Grachev, V. M., Grabchikov, S. S., Muravyev-Smirnov, S. S. et. al. (2015). Electromagnetic shields based on multilayer film structures. Bulletin of the Lebedev Physics Institute, 42 (2), 43–47. doi: https://doi.org/10.3103/s1068335615020037
  24. Safonov, A. L., Safonov, L. I. (2015). Elektricheskie pryamougol'nye soediniteli. Mnogosloynye metallizirovannye ekrany zashchity ot EMP i sposoby ih polucheniya. Technologies in Electronic Industry, 1, 64–69.
  25. Coey, J. (2010). Magnetism and magnetic materials. Cambridge University Press. doi: https://doi.org/10.1017/CBO9780511845000
  26. Fortescue, P., Swinerd, G., Stark, J. (Eds.) (2011). Spacecraft Systems Engineering. John Wiley & Sons Ltd. doi: https://doi.org/10.1002/9781119971009
  27. Maslova, A. I., Pirozhenko, A. V. (2016). Orbit changes under the small constant deceleration. Space Science and Technology, 22 (6), 20–25. doi: https://doi.org/10.15407/knit2016.06.020
  28. Alpatov, A. P. et. al. (1978). Dinamika kosmicheskih apparatov s magnitnymi sistemami upravleniya. Moscow: Mashinostroenie, 200.
  29. Khoroshylov, S. V. (2018). Relative Motion Control System of Spacecraft for Contactless Space Debris Removal. Nauka Ta Innovacii, 14 (4), 5–17. doi: https://doi.org/10.15407/scin14.04.005
  30. Alpatov, A., Khoroshylov, S., Bombardelli, C. (2018). Relative control of an ion beam shepherd satellite using the impulse compensation thruster. Acta Astronautica, 151, 543–554. doi: https://doi.org/10.1016/j.actaastro.2018.06.056

Downloads

Published

2019-10-01

How to Cite

Lapkhanov, E., & Khoroshylov, S. (2019). Development of the aeromagnetic space debris deorbiting system. Eastern-European Journal of Enterprise Technologies, 5(5 (101), 30–37. https://doi.org/10.15587/1729-4061.2019.179382

Issue

Section

Applied physics