A study of the effect of deposition conditions on the phase-structural state of ion-plasma WC – TiC coatings

Oleg Sоbоl`, Osman Dur


Studies of the influence of thermal and radiation factors on the elemental composition and phase-structural state of WC-TiC ion-plasma condensates of a quasibinary system are presented. As a thermal factor, we used different substrate temperatures during deposition and temperatures of high-temperature annealing of coatings after their deposition. The influence of the radiation factor was changed by applying a negative bias potential of different magnitudes to the substrate during coating deposition. It was found that with a change in the substrate temperature during deposition (in the temperature range 80–950 °C), a change occurs in the elemental composition of the coating. With an increase in the deposition temperature, the relative content of heavy metal atoms W increases and the relative content of Ti and C atoms decreases. At the phase-structural level, this leads to a change from the single-phase state ((W, Ti)C supersaturated solid solution at a deposition temperature of less than 700 °C) to two-phase ((W, Ti)C and α-W2C phases at a deposition temperature of more than 700 °C). The use of high-temperature annealing of coatings after their formation showed a relatively low decay activation efficiency. At an annealing temperature of 800 °C, a noticeable change in the phase-structural state is not observed, and at the highest temperature of 1000 °C and holding for 2 hours, the content of the α-W2C phase is relatively small and does not exceed 15 vol %. The supply of a bias potential stimulates the formation of a two-phase state from (W, Ti)C and α-W2C phases with nanometer crystallite size. With an increase in the bias potential from –50 V to –115 V, the average crystallite size decreases from 4.5 nm to 3.8 nm.

The use of structural engineering methods in the work to create two-phase materials based on a quasibinary WC-TiC system is the basis for increasing the strength and crack resistance of coatings of such systems


quasibinary system; elemental composition; substrate temperature; bias potential; supersaturated solid solution


Morton, B. D., Wang, H., Fleming, R. A., Zou, M. (2011). Nanoscale Surface Engineering with Deformation-Resistant Core–Shell Nanostructures. Tribology Letters, 42 (1), 51–58. doi:

Bourebia, M., Laouar, L., Hamadache, H., Dominiak, S. (2016). Improvement of surface finish by ball burnishing: approach by fractal dimension. Surface Engineering, 33 (4), 255–262. doi:

Sobol’, O. V., Andreev, A. A., Gorban’, V. F. (2016). Structural Engineering of Vacuum-ARC Multiperiod Coatings. Metal Science and Heat Treatment, 58 (1-2), 37–39. doi:

Mayrhofer, P. H., Mitterer, C., Wen, J. G., Greene, J. E., Petrov, I. (2005). Self-organized nanocolumnar structure in superhard TiB2 thin films. Applied Physics Letters, 86 (13), 131909. doi:

Sobol´, O. V., Andreev, A. A., Gorban´, V. F., Meylekhov, A. A., Postelnyk, Н. О. (2016). Structural Engineering of the Vacuum Arc ZrN/CrN Multilayer Coatings. Journal of Nano- and Electronic Physics, 8 (1), 01042. doi:

Sobol’, O. V. (2016). Structural Engineering Vacuum-plasma Coatings Interstitial Phases. Journal of Nano- and Electronic Physics, 8 (2), 02024. doi:

Yu, D., Wang, C., Cheng, X., Zhang, F. (2009). Microstructure and properties of TiAlSiN coatings prepared by hybrid PVD technology. Thin Solid Films, 517 (17), 4950–4955. doi:

Jaroš, M., Musil, J., Čerstvý, R., Haviar, S. (2017). Effect of energy on structure, microstructure and mechanical properties of hard Ti(Al,V)Nx films prepared by magnetron sputtering. Surface and Coatings Technology, 332, 190–197. doi:

Musil, J., Kos, Š., Zenkin, S., Čiperová, Z., Javdošňák, D., Čerstvý, R. (2018). β- (Me1, Me2) and MeNx films deposited by magnetron sputtering: Novel heterostructural alloy and compound films. Surface and Coatings Technology, 337, 75–81. doi:

Lackner, J., Waldhauser, W., Major, L., Kot, M. (2014). Tribology and Micromechanics of Chromium Nitride Based Multilayer Coatings on Soft and Hard Substrates. Coatings, 4 (1), 121–138. doi:

Sobol’, O. V., Meilekhov, A. A. (2018). Conditions of Attaining a Superhard State at a Critical Thickness of Nanolayers in Multiperiodic Vacuum-Arc Plasma Deposited Nitride Coatings. Technical Physics Letters, 44 (1), 63–66. doi:

Silva, F. J. G., Martinho, R. P., Alexandre, R. J. D., Baptista, A. P. M. (2012). Wear Resistance of TiAlSiN Thin Coatings. Journal of Nanoscience and Nanotechnology, 12 (12), 9094–9101. doi:

Endrino, J. L., Palacín, S., Aguirre, M. H., Gutiérrez, A., Schäfers, F. (2007). Determination of the local environment of silicon and the microstructure of quaternary CrAl(Si)N films. Acta Materialia, 55 (6), 2129–2135. doi:

Shizhi, L., Yulong, S., Hongrui, P. (1992). Ti-Si-N films prepared by plasma-enhanced chemical vapor deposition. Plasma Chemistry and Plasma Processing, 12 (3), 287–297. doi:

Vepřek, S. (1999). The search for novel, superhard materials. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 17 (5), 2401–2420. doi:

Veprek, S., Veprek-Heijman, M. G. J., Karvankova, P., Prochazka, J. (2005). Different approaches to superhard coatings and nanocomposites. Thin Solid Films, 476 (1), 1–29. doi:

Sobol, O. V., Postelnyk, A. A., Meylekhov, A. A., Andreev, A. A., Stolbovoy, V. A. (2017). Structural Engineering of the Multilayer Vacuum Arc Nitride Coatings Based on Ti, Cr, Mo and Zr. Journal of Nano- and Electronic Physics, 9 (3), 03003. doi:

Zhang, R. F., Veprek, S. (2006). On the spinodal nature of the phase segregation and formation of stable nanostructure in the Ti–Si–N system. Materials Science and Engineering: A, 424 (1-2), 128–137. doi:

Sobol, O. V., Dub, S. N., Pogrebnjak, A. D., Mygushchenko, R. P., Postelnyk, A. A., Zvyagolsky, A. V., Tolmachova, G. N. (2018). The effect of low titanium content on the phase composition, structure, and mechanical properties of magnetron sputtered WB2-TiB2 films. Thin Solid Films, 662, 137–144. doi:

Euchner, H., Mayrhofer, P. H. (2015). Designing thin film materials – Ternary borides from first principles. Thin Solid Films, 583, 46–49. doi:

Li, D., Lin, X., Cheng, S., Dravid, V. P., Chung, Y., Wong, M., Sproul, W. D. (1996). Structure and hardness studies of CNx/TiN nanocomposite coatings. Applied Physics Letters, 68 (9), 1211–1213. doi:

Sobol’, O. V., Meylekhov, A. A., Stolbovoy, V. A., Postelnyk, A. A. (2016). Structural Engineering Multiperiod Coating ZrN/MoN. Journal of Nano- and Electronic Physics, 8 (3), 03039. doi:

Krause-Rehberg, R., Pogrebnyak, A. D., Borisyuk, V. N., Kaverin, M. V., Ponomarev, A. G., Bilokur, M. A. et. al. (2013). Analysis of local regions near interfaces in nanostructured multicomponent (Ti-Zr-Hf-V-Nb)N coatings produced by the cathodic-arc-vapor-deposition from an arc of an evaporating cathode. The Physics of Metals and Metallography, 114 (8), 672–680. doi:

Tjong, S. C., Chen, H. (2004). Nanocrystalline materials and coatings. Materials Science and Engineering: R: Reports, 45 (1-2), 1–88. doi:

Sobol’, O. V., Andreev, A. A., Gorban’, V. F., Stolbovoy, V. A., Melekhov, A. A., Postelnyk, A. A. (2016). Possibilities of structural engineering in multilayer vacuum-arc ZrN/CrN coatings by varying the nanolayer thickness and application of a bias potential. Technical Physics, 61 (7), 1060–1063. doi:

Geng, Z., Liu, Y., Zhang, H. (2018). Tribological properties of electrodeposited Ni–ZrO2 nanocomposite coatings on copperplate of crystallizer. Surface Engineering, 35 (10), 919–926. doi:

Ghadami, F., Zakeri, A., Aghdam, A. S. R., Tahmasebi, R. (2019). Structural characteristics and high-temperature oxidation behavior of HVOF sprayed nano-CeO2 reinforced NiCoCrAlY nanocomposite coatings. Surface and Coatings Technology, 373, 7–16. doi:

Chen, Z., Qiao, L., Hillairet, J., Song, Y., Turq, V., Wang, P. et. al. (2019). Development and characterization of magnetron sputtered self-lubricating Au-Ni/a-C nano-composite coating on CuCrZr alloy substrate. Applied Surface Science, 492, 540–549. doi:

Ivashchenko, V. I., Dub, S. N., Scrynskii, P. L., Pogrebnjak, A. D., Sobol’, O. V., Tolmacheva, G. N. et. al. (2016). Nb–Al–N thin films: Structural transition from nanocrystalline solid solution nc-(Nb,Al)N into nanocomposite nc-(Nb, Al)N/a–AlN. Journal of Superhard Materials, 38 (2), 103–113. doi:

Banerjee, P., Bagchi, B. (2018). Effects of metastable phases on surface tension, nucleation, and the disappearance of polymorphs. The Journal of Chemical Physics, 149 (21), 214704. doi:

Sobol’, O. V. (2011). Control of the structure and stress state of thin films and coatings in the process of their preparation by ion-plasma methods. Physics of the Solid State, 53 (7), 1464–1473. doi:

Rempel, A. A., Gusev, A. I. (2000). Preparation of disordered and ordered highly nonstoichiometric carbides and evaluation of their homogeneity. Physics of the Solid State, 42 (7), 1280–1286. doi:

Jansson, U., Lewin, E. (2013). Sputter deposition of transition-metal carbide films – A critical review from a chemical perspective. Thin Solid Films, 536, 1–24. doi:

Zhang, Y., Li, J., Zhou, L., Xiang, S. (2002). A theoretical study on the chemical bonding of 3d-transition-metal carbides. Solid State Communications, 121 (8), 411–416. doi:

Sobol’, O. V., Shovkoplyas, O. A. (2013). On advantages of X-ray schemes with orthogonal diffraction vectors for studying the structural state of ion-plasma coatings. Technical Physics Letters, 39 (6), 536–539. doi:

Smith, D. K., Jenkins, R. (1996). The Powder Diffraction file: Past, present, and future. Journal of Research of the National Institute of Standards and Technology, 101 (3), 259. doi:

Bushroa, A. R., Rahbari, R. G., Masjuki, H. H., Muhamad, M. R. (2012). Approximation of crystallite size and microstrain via XRD line broadening analysis in TiSiN thin films. Vacuum, 86 (8), 1107–1112. doi:

Veprek, S., Veprek-Heijman, M. J. G. (2008). Industrial applications of superhard nanocomposite coatings. Surface and Coatings Technology, 202 (21), 5063–5073. doi:

Musil, J., Daniel, R., Zeman, P., Takai, O. (2005). Structure and properties of magnetron sputtered Zr–Si–N films with a high (≥25 at.%) Si content. Thin Solid Films, 478 (1-2), 238–247. doi:

Thornton, J. A. (1974). Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings. Journal of Vacuum Science and Technology, 11 (4), 666–670. doi:

GOST Style Citations

Copyright (c) 2019 Oleg Sоbоl`, Osman Dur

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN (print) 1729-3774, ISSN (on-line) 1729-4061