A study of the effect of deposition conditions on the phase-structural state of ion-plasma WC – TiC coatings

Authors

DOI:

https://doi.org/10.15587/1729-4061.2019.181291

Keywords:

quasibinary system, elemental composition, substrate temperature, bias potential, supersaturated solid solution

Abstract

Studies of the influence of thermal and radiation factors on the elemental composition and phase-structural state of WC-TiC ion-plasma condensates of a quasibinary system are presented. As a thermal factor, we used different substrate temperatures during deposition and temperatures of high-temperature annealing of coatings after their deposition. The influence of the radiation factor was changed by applying a negative bias potential of different magnitudes to the substrate during coating deposition. It was found that with a change in the substrate temperature during deposition (in the temperature range 80–950 °C), a change occurs in the elemental composition of the coating. With an increase in the deposition temperature, the relative content of heavy metal atoms W increases and the relative content of Ti and C atoms decreases. At the phase-structural level, this leads to a change from the single-phase state ((W, Ti)C supersaturated solid solution at a deposition temperature of less than 700 °C) to two-phase ((W, Ti)C and α-W2C phases at a deposition temperature of more than 700 °C). The use of high-temperature annealing of coatings after their formation showed a relatively low decay activation efficiency. At an annealing temperature of 800 °C, a noticeable change in the phase-structural state is not observed, and at the highest temperature of 1000 °C and holding for 2 hours, the content of the α-W2C phase is relatively small and does not exceed 15 vol %. The supply of a bias potential stimulates the formation of a two-phase state from (W, Ti)C and α-W2C phases with nanometer crystallite size. With an increase in the bias potential from –50 V to –115 V, the average crystallite size decreases from 4.5 nm to 3.8 nm.

The use of structural engineering methods in the work to create two-phase materials based on a quasibinary WC-TiC system is the basis for increasing the strength and crack resistance of coatings of such systems

Author Biographies

Oleg Sоbоl`, National Technical University "Kharkiv Polytechnic Institute" Kyrpychova str., 2, Kharkiv, Ukraine, 61002

Doctor of Physical and Mathematical Sciences, Professor

Department of Materials Science

Osman Dur, Hacettepe University Technopolis Üniversiteler Mahallesi, 1596, Cadde 6. F-Blok Kat:3 Beytepe, Ankara, Turkey, 06800

Researcher

References

  1. Morton, B. D., Wang, H., Fleming, R. A., Zou, M. (2011). Nanoscale Surface Engineering with Deformation-Resistant Core–Shell Nanostructures. Tribology Letters, 42 (1), 51–58. doi: https://doi.org/10.1007/s11249-011-9747-0
  2. Bourebia, M., Laouar, L., Hamadache, H., Dominiak, S. (2016). Improvement of surface finish by ball burnishing: approach by fractal dimension. Surface Engineering, 33 (4), 255–262. doi: https://doi.org/10.1080/02670844.2016.1232778
  3. Sobol’, O. V., Andreev, A. A., Gorban’, V. F. (2016). Structural Engineering of Vacuum-ARC Multiperiod Coatings. Metal Science and Heat Treatment, 58 (1-2), 37–39. doi: https://doi.org/10.1007/s11041-016-9961-3
  4. Mayrhofer, P. H., Mitterer, C., Wen, J. G., Greene, J. E., Petrov, I. (2005). Self-organized nanocolumnar structure in superhard TiB2 thin films. Applied Physics Letters, 86 (13), 131909. doi: https://doi.org/10.1063/1.1887824
  5. Sobol´, O. V., Andreev, A. A., Gorban´, V. F., Meylekhov, A. A., Postelnyk, Н. О. (2016). Structural Engineering of the Vacuum Arc ZrN/CrN Multilayer Coatings. Journal of Nano- and Electronic Physics, 8 (1), 01042. doi: https://doi.org/10.21272/jnep.8(1).01042
  6. Sobol’, O. V. (2016). Structural Engineering Vacuum-plasma Coatings Interstitial Phases. Journal of Nano- and Electronic Physics, 8 (2), 02024. doi: https://doi.org/10.21272/jnep.8(2).02024
  7. Yu, D., Wang, C., Cheng, X., Zhang, F. (2009). Microstructure and properties of TiAlSiN coatings prepared by hybrid PVD technology. Thin Solid Films, 517 (17), 4950–4955. doi: https://doi.org/10.1016/j.tsf.2009.03.091
  8. Jaroš, M., Musil, J., Čerstvý, R., Haviar, S. (2017). Effect of energy on structure, microstructure and mechanical properties of hard Ti(Al,V)Nx films prepared by magnetron sputtering. Surface and Coatings Technology, 332, 190–197. doi: https://doi.org/10.1016/j.surfcoat.2017.06.074
  9. Musil, J., Kos, Š., Zenkin, S., Čiperová, Z., Javdošňák, D., Čerstvý, R. (2018). β- (Me1, Me2) and MeNx films deposited by magnetron sputtering: Novel heterostructural alloy and compound films. Surface and Coatings Technology, 337, 75–81. doi: https://doi.org/10.1016/j.surfcoat.2017.12.057
  10. Lackner, J., Waldhauser, W., Major, L., Kot, M. (2014). Tribology and Micromechanics of Chromium Nitride Based Multilayer Coatings on Soft and Hard Substrates. Coatings, 4 (1), 121–138. doi: https://doi.org/10.3390/coatings4010121
  11. Sobol’, O. V., Meilekhov, A. A. (2018). Conditions of Attaining a Superhard State at a Critical Thickness of Nanolayers in Multiperiodic Vacuum-Arc Plasma Deposited Nitride Coatings. Technical Physics Letters, 44 (1), 63–66. doi: https://doi.org/10.1134/s1063785018010224
  12. Silva, F. J. G., Martinho, R. P., Alexandre, R. J. D., Baptista, A. P. M. (2012). Wear Resistance of TiAlSiN Thin Coatings. Journal of Nanoscience and Nanotechnology, 12 (12), 9094–9101. doi: https://doi.org/10.1166/jnn.2012.6760
  13. Endrino, J. L., Palacín, S., Aguirre, M. H., Gutiérrez, A., Schäfers, F. (2007). Determination of the local environment of silicon and the microstructure of quaternary CrAl(Si)N films. Acta Materialia, 55 (6), 2129–2135. doi: https://doi.org/10.1016/j.actamat.2006.11.014
  14. Shizhi, L., Yulong, S., Hongrui, P. (1992). Ti-Si-N films prepared by plasma-enhanced chemical vapor deposition. Plasma Chemistry and Plasma Processing, 12 (3), 287–297. doi: https://doi.org/10.1007/bf01447027
  15. Vepřek, S. (1999). The search for novel, superhard materials. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 17 (5), 2401–2420. doi: https://doi.org/10.1116/1.581977
  16. Veprek, S., Veprek-Heijman, M. G. J., Karvankova, P., Prochazka, J. (2005). Different approaches to superhard coatings and nanocomposites. Thin Solid Films, 476 (1), 1–29. doi: https://doi.org/10.1016/j.tsf.2004.10.053
  17. Sobol, O. V., Postelnyk, A. A., Meylekhov, A. A., Andreev, A. A., Stolbovoy, V. A. (2017). Structural Engineering of the Multilayer Vacuum Arc Nitride Coatings Based on Ti, Cr, Mo and Zr. Journal of Nano- and Electronic Physics, 9 (3), 03003. doi: https://doi.org/10.21272/jnep.9(3).03003
  18. Zhang, R. F., Veprek, S. (2006). On the spinodal nature of the phase segregation and formation of stable nanostructure in the Ti–Si–N system. Materials Science and Engineering: A, 424 (1-2), 128–137. doi: https://doi.org/10.1016/j.msea.2006.03.017
  19. Sobol, O. V., Dub, S. N., Pogrebnjak, A. D., Mygushchenko, R. P., Postelnyk, A. A., Zvyagolsky, A. V., Tolmachova, G. N. (2018). The effect of low titanium content on the phase composition, structure, and mechanical properties of magnetron sputtered WB2-TiB2 films. Thin Solid Films, 662, 137–144. doi: https://doi.org/10.1016/j.tsf.2018.07.042
  20. Euchner, H., Mayrhofer, P. H. (2015). Designing thin film materials – Ternary borides from first principles. Thin Solid Films, 583, 46–49. doi: https://doi.org/10.1016/j.tsf.2015.03.035
  21. Li, D., Lin, X., Cheng, S., Dravid, V. P., Chung, Y., Wong, M., Sproul, W. D. (1996). Structure and hardness studies of CNx/TiN nanocomposite coatings. Applied Physics Letters, 68 (9), 1211–1213. doi: https://doi.org/10.1063/1.115972
  22. Sobol’, O. V., Meylekhov, A. A., Stolbovoy, V. A., Postelnyk, A. A. (2016). Structural Engineering Multiperiod Coating ZrN/MoN. Journal of Nano- and Electronic Physics, 8 (3), 03039. doi: https://doi.org/10.21272/jnep.8(3).03039
  23. Krause-Rehberg, R., Pogrebnyak, A. D., Borisyuk, V. N., Kaverin, M. V., Ponomarev, A. G., Bilokur, M. A. et. al. (2013). Analysis of local regions near interfaces in nanostructured multicomponent (Ti-Zr-Hf-V-Nb)N coatings produced by the cathodic-arc-vapor-deposition from an arc of an evaporating cathode. The Physics of Metals and Metallography, 114 (8), 672–680. doi: https://doi.org/10.1134/s0031918x13080061
  24. Tjong, S. C., Chen, H. (2004). Nanocrystalline materials and coatings. Materials Science and Engineering: R: Reports, 45 (1-2), 1–88. doi: https://doi.org/10.1016/j.mser.2004.07.001
  25. Sobol’, O. V., Andreev, A. A., Gorban’, V. F., Stolbovoy, V. A., Melekhov, A. A., Postelnyk, A. A. (2016). Possibilities of structural engineering in multilayer vacuum-arc ZrN/CrN coatings by varying the nanolayer thickness and application of a bias potential. Technical Physics, 61 (7), 1060–1063. doi: https://doi.org/10.1134/s1063784216070252
  26. Geng, Z., Liu, Y., Zhang, H. (2018). Tribological properties of electrodeposited Ni–ZrO2 nanocomposite coatings on copperplate of crystallizer. Surface Engineering, 35 (10), 919–926. doi: https://doi.org/10.1080/02670844.2018.1482675
  27. Ghadami, F., Zakeri, A., Aghdam, A. S. R., Tahmasebi, R. (2019). Structural characteristics and high-temperature oxidation behavior of HVOF sprayed nano-CeO2 reinforced NiCoCrAlY nanocomposite coatings. Surface and Coatings Technology, 373, 7–16. doi: https://doi.org/10.1016/j.surfcoat.2019.05.062
  28. Chen, Z., Qiao, L., Hillairet, J., Song, Y., Turq, V., Wang, P. et. al. (2019). Development and characterization of magnetron sputtered self-lubricating Au-Ni/a-C nano-composite coating on CuCrZr alloy substrate. Applied Surface Science, 492, 540–549. doi: https://doi.org/10.1016/j.apsusc.2019.06.240
  29. Ivashchenko, V. I., Dub, S. N., Scrynskii, P. L., Pogrebnjak, A. D., Sobol’, O. V., Tolmacheva, G. N. et. al. (2016). Nb–Al–N thin films: Structural transition from nanocrystalline solid solution nc-(Nb,Al)N into nanocomposite nc-(Nb, Al)N/a–AlN. Journal of Superhard Materials, 38 (2), 103–113. doi: https://doi.org/10.3103/s1063457616020040
  30. Banerjee, P., Bagchi, B. (2018). Effects of metastable phases on surface tension, nucleation, and the disappearance of polymorphs. The Journal of Chemical Physics, 149 (21), 214704. doi: https://doi.org/10.1063/1.5054151
  31. Sobol’, O. V. (2011). Control of the structure and stress state of thin films and coatings in the process of their preparation by ion-plasma methods. Physics of the Solid State, 53 (7), 1464–1473. doi: https://doi.org/10.1134/s1063783411070274
  32. Rempel, A. A., Gusev, A. I. (2000). Preparation of disordered and ordered highly nonstoichiometric carbides and evaluation of their homogeneity. Physics of the Solid State, 42 (7), 1280–1286. doi: https://doi.org/10.1134/1.1131377
  33. Jansson, U., Lewin, E. (2013). Sputter deposition of transition-metal carbide films – A critical review from a chemical perspective. Thin Solid Films, 536, 1–24. doi: https://doi.org/10.1016/j.tsf.2013.02.019
  34. Zhang, Y., Li, J., Zhou, L., Xiang, S. (2002). A theoretical study on the chemical bonding of 3d-transition-metal carbides. Solid State Communications, 121 (8), 411–416. doi: https://doi.org/10.1016/s0038-1098(02)00034-0
  35. Sobol’, O. V., Shovkoplyas, O. A. (2013). On advantages of X-ray schemes with orthogonal diffraction vectors for studying the structural state of ion-plasma coatings. Technical Physics Letters, 39 (6), 536–539. doi: https://doi.org/10.1134/s1063785013060126
  36. Smith, D. K., Jenkins, R. (1996). The Powder Diffraction file: Past, present, and future. Journal of Research of the National Institute of Standards and Technology, 101 (3), 259. doi: https://doi.org/10.6028/jres.101.027
  37. Bushroa, A. R., Rahbari, R. G., Masjuki, H. H., Muhamad, M. R. (2012). Approximation of crystallite size and microstrain via XRD line broadening analysis in TiSiN thin films. Vacuum, 86 (8), 1107–1112. doi: https://doi.org/10.1016/j.vacuum.2011.10.011
  38. Veprek, S., Veprek-Heijman, M. J. G. (2008). Industrial applications of superhard nanocomposite coatings. Surface and Coatings Technology, 202 (21), 5063–5073. doi: https://doi.org/10.1016/j.surfcoat.2008.05.038
  39. Musil, J., Daniel, R., Zeman, P., Takai, O. (2005). Structure and properties of magnetron sputtered Zr–Si–N films with a high (≥25 at.%) Si content. Thin Solid Films, 478 (1-2), 238–247. doi: https://doi.org/10.1016/j.tsf.2004.11.190
  40. Thornton, J. A. (1974). Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings. Journal of Vacuum Science and Technology, 11 (4), 666–670. doi: https://doi.org/10.1116/1.1312732

Downloads

Published

2019-10-21

How to Cite

Sоbоl` O., & Dur, O. (2019). A study of the effect of deposition conditions on the phase-structural state of ion-plasma WC – TiC coatings. Eastern-European Journal of Enterprise Technologies, 5(12 (101), 6–13. https://doi.org/10.15587/1729-4061.2019.181291

Issue

Section

Materials Science