Self-propelled underwater system control integration within maritime technological complex

Authors

  • Віктор Анатолійович Надточій Named Admiral Makarov National University of Ships Building Kherson Division Ushakova str., 44, Kherson, Ukraine, 73022, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2013.18342

Keywords:

self-propelled tethered underwater system, automatic control system, external disturbances, manipulator

Abstract

The concept of construction and generalized structure of an integrated system of automatic control of self-propelled subsea complex within the mother ship and self-propelled tethered underwater system as the only marine technological complex, which operates in conditions of uncertainty of external disturbances and non-stationarity of its parameters, were developed. The integrated system has five control levels − strategic, tactical, programming, execution and controlling. The execution level consists of five automatic control subsystems, which provide a coordinated operation of actuating stabilization mechanisms of mother ship, cable winches, self-propelled underwater vehicle, underwater manipulator and its clamping unit. The implementation of the integrated ACS (automatic control system) will enable increasing the productivity and performance quality of complex technical underwater work using attached implements, such as remotely-controlled manipulators.

Author Biography

Віктор Анатолійович Надточій, Named Admiral Makarov National University of Ships Building Kherson Division Ushakova str., 44, Kherson, Ukraine, 73022

Assistant

Department of Automatic and Electrical Equipment of Ships

References

  1. Undersea Vehicles and national Needs [Text] / National Academy Press. – Washington, D.C., 1996. – 114 p.
  2. Блинцов, В. С. Привязные подводные системы. [Текст] / В. С. Блинцов. – К.: Наукова думка, 1998. – 232 с.
  3. Christ, R. The ROV Manual: A User Guide for Observation Class Remotely Operated Vehicles [Text] / Robert D. Christ, Robert L. Wernli Sr. – Elsevier, 2007. – 308 p.
  4. Войтов, Д. В. Телеуправляемые необитаемые подводные аппараты. [Текст] / Д. В. Войтов. – Книга + CD. – М.: МОРКНИГА, 2012. – 506 с.
  5. Блинцов, В. С. Привязные подводные системы [Текст] / В. С. Блинцов. – К.: Наукова думка, 1998. – 232 с.
  6. Alexander, V. Inzartsev Underwater Vehicles. [Text] / V. Inzartsev Alexander. – Publisher: InTech, 2009. – 582 р.
  7. Таскаев, В. Н. Методика проведения подводно-археологических работ. [Текст] / В. Н. Таскаев. – М.: «Вопросы подводной археологии», 2010. – С. 45-95.
  8. Подводные технологии и средства освоения Мирового океана [Текст]. – М.: Издательский дом «Оружие и технологии», 2011. – 780 с.
  9. Шостак, В. П. Подводные аппараты-роботы и их манипуляторы. [Текст] / В. П. Шостак. – Чикаго: Мегатрон, 2011. – 134 с.
  10. Блинцов, В. С. Современные проблемы создания электрооборудования и автоматики подводных аппаратов [Текст] / В. С. Блинцов // Радіоелектронні і комп’ютерні системи. – Національний аерокосмічний університет ім. М.Є. Жуковського «Харківський авіаційний інститут». – 2007. – №5 (24). – С. 90-98.
  11. Наумов, Л. А. Приоритеты подводной робототехники [Текст] / Л. А. Наумов, Ю. В. Матвиенко, Л. В. Киселев // Мат-лы ХІІІ Международной научно-технической конференции «Современные методы и средства океанологических исследований». – М.: АПР, 2013. –Т. 1. – С. 296-297.
  12. Ястребов, В. С. Подводные аппараты-роботы и их манипуляторы [Текст] / В. С. Ястребов. – М.: Наука, 1980. – 144 с.
  13. Thor, S. Fossen Adaptive Control of Nonlinear Underwater Robotic Systems: A case study of underwater robotic systems. [Text] / S. Thor, I. Sagatun Svein. – J. Field Robotics. – 1991. – Vol. 8, Issue 3. – P. 393-412.
  14. Yuh, J. Learning Control for Underwater Robotic Vehicles. [Text] / J. Yuh // IEEE Control Systems, 1994. – P. 39-46.
  15. Howard, H. W. The Design and Development of an Intelligent Underwater Robot [Text] / H. Wang Howard, M. Rock Stephen // Journal of Autonomous Robots. – 1996. – №3. – P. 297-320.
  16. Zain, Z. M. Design and development of an RS232-based ROV controller system. [Text] / Z. M. Zain, R. B. Ahmad, M. R. Arshad // IEEE Region 10 Conference “Analog and digital techniques in electrical engineering”, 2004. – Vol. 4. – P. 487-490.
  17. Tzung-Hang, Lee. Application of an On-line Trainning Predictor/Controller to Dynamic Positioning of Floating Structures [Text] / Lee Tzung-Hang, Cao Yusong, Lin Yen-mi // Tamkang Journal of Science and Engineering. – 2001. – Vol. 4. – No. 3. – P. 141-154.
  18. Bong-Huan, Jun. Manipulability analysis of underwater robotic arms on ROV and application to task-oriented joint configuration. [Text] / Jun Bong-Huan, Lee Pan-Mook, Kim Seungmin // Journal of Mechanical Science and Technology. – 2008. – №22. – P. 887-894.
  19. Костенко, В. В. Исследование влияния кабеля связи на маневренность телеуправляемого подводного аппарата [Текст] / В. В. Костенко, И. Г. Мокеева // Подводные исследования и робототехника. – 2009. – №1(7). – С. 22-27.
  20. Govindarajan, R. Underwater Robot Control Systems. [Text] / R. Govindarajan, S. Arulselvi, P. Thamarai // International Journal of Scientific Engineering and Technology. – 2013. – Vol. 2, Issue 4. – P. 222-224.
  21. Moore, S. Underwater Robotics: Science, Design & Fabrication [Text] / Steven W. Moore, Harry Bohm, Vickie Jensen. – Publisher: Marine Advanced Technology Education (MATE) Center, 2010. – 770 p.
  22. Вагущенко, Л. Л. Системы автоматичнского управления движением судов. [Текст] / Л. Л. Вагущенко, Л. Л. Цымбал. – Одесса: Латстар, 2002. – 310 с.
  23. Харазов, В. Г. Интегрированные системы управления технологическими процессами [Текст] / В. Г. Харазов. – М.: Изд-во «Профессия», 2009. – 591 с.
  24. Бойков, В. И. Интегрированные системы проектирования и управления[Текст] / В. И. Бойков, Г. И. Болтунов, О. К. Мансурова. – СПб: СПбГУ ИТМО, 2010. – 162 с.
  25. Вагущенко, Л. Л. Интегрированные системы ходового мостика [Текст] / Л. Л. Вагущенко. – Одесса: Латстар, 2003. – 169 с.
  26. Блінцов, В. С. Сучасні задачі автоматизації керування самохідними прив’язними підводними системами з начіпним обладнанням [Текст] / В. С. Блінцов, В. А. Надточій // «Збірник наукових праць НУК». – Миколаїв: НУК, 2012. – №2. – С. 79-83.
  27. Undersea Vehicles and national Needs. (1996). National Academy Press. Washington, D.C., 114.
  28. Blintsov, V. S. (1998). Privyaznye podvodnye sistemy. K.: Naukova dumka, 232.
  29. Christ, R., Wernli, R. (2007). The ROV Manual: A User Guide for Observation Class Remotely Operated Vehicles. Elsevier, 308.
  30. Voytov, D. V. (2012). Teleupravlyaemye neobitaemye podvodnye apparaty. Kniga + CD. M.: MORKNIGA, 506.
  31. Blintsov, V. S. (1998). Privyaznye podvodnye sistemy. K.: Naukova dumka, 232.
  32. Alexander, V. Inzartsev. (2009). Underwater Vehicles. Publisher: InTech, 582.
  33. Taskaev, V. N. (2010). Metodika provedeniya podvodno-arkheologicheskikh rabot. M.: «Voprosy podvodnoy arkheologii», 45-95.
  34. Podvodnye tekhnologii i sredstva osvoeniya Mirovogo okeana. (2011). M.: Izdatel'skiy dom «Oruzhie i tekhnologii», 780.
  35. Shostak, V. P. (2011). Podvodnye apparaty-roboty i ikh manipulyatory. Chikago: Megatron, 134.
  36. Blintsov, V. S. (2007). Sovremennye problemy sozdaniya elektrooborudovaniya i avtomatiki podvodnykh apparatov. Radіoelektronnі і komp’yuternі sistemi, №5 (24), 90-98.
  37. Naumov, L. A., Matvienko, Yu. V., Kiselev, L. V. (2013). Prioritety podvodnoy robototekhniki. Mat-ly KhІІІ Mezhdunarodnoy nauchno-tekhnicheskoy konferentsii «Sovremennye metody i sredstva okeanologicheskikh issledovaniy». M.: APR. T. 1, 296-297.
  38. Yastrebov, V. S. (1980). Podvodnye apparaty-roboty i ikh manipulyatory. M.: Nauka, 144.
  39. Thor, S. Sagatun, I. S. (1991). Fossen Adaptive Control of Nonlinear Underwater Robotic Systems: A case study of underwater robotic systems. J. Field Robotics, Vol. 8, Issue 3, 393-412.
  40. Yuh, J. (1994). Learning Control for Underwater Robotic Vehicles. IEEE Control Systems, 39-46.
  41. Howard, H. W., Stephen, M. R. (1996). The Design and Development of an Intelligent Underwater Robot. Journal of Autonomous Robots, №3, 297-320.
  42. Zain, Z. M., Ahmad, R. B., Arshad, M. R. (2004). Design and development of an RS232-based ROV controller system. IEEE Region 10 Conference “Analog and digital techniques in electrical engineering”, Vol. 4, 487-490.
  43. Tzung-Hang, Lee, Yusong, Cao, Yen-mi, Lin. (2001). Application of an On-line Trainning Predictor/Controller to Dynamic Positioning of Floating Structures. Tamkang Journal of Science and Engineering, Vol. 4, No. 3, 141-154.
  44. Bong-Huan, Jun, Pan-Mook, Lee, Seungmin, Kim. (2008). Manipulability analysis of underwater robotic arms on ROV and application to task-oriented joint configuration. Journal of Mechanical Science and Technology, №22, 887-894.
  45. Kostenko, V. V., Mokeeva, I. G. (2009). Issledovanie vliyaniya kabelya svyazi na manevrennost' teleupravlyaemogo podvodnogo apparata. Podvodnye issledovaniya i robototekhnika, №1(7), 22-27.
  46. Govindarajan, R., Arulselvi, S., Thamarai, P. (2013). Underwater Robot Control Systems. International Journal of Scientific Engineering and Technology, Vol. 2, Issue 4, 222-224.
  47. Moore, S., Bohm, H., Jensen, V. (2010). Underwater Robotics: Science, Design & Fabrication. Publisher: Marine Advanced Technology Education (MATE) Center, 770.
  48. Vagushchenko, L. L., Tsymbal, L. L. (2002). Sistemy avtomatichnskogo upravleniya dvizheniem sudov. Odessa: Latstar, 310.
  49. Kharazov, V. G. (2009). Integrirovannye sistemy upravleniya tekhnologicheskimi protsessami. M.: Izd-vo «Professiya», 591.
  50. Boykov, V. I., Boltunov, G. I., Mansurova, O. K. (2010). Integrirovannye sistemy proektirovaniya i upravleniya. SPb: SPbGU ITMO, 162.
  51. Vagushchenko, L. L. (2003). Integrirovannye sistemy khodovogo mostika. Odessa: Latstar, 169.
  52. Blintsov, V. S., Nadtochiy, V. A. (2012). Suchasni zadachi avtomatyzatsiyi keruvannya samokhidnymy pryv’yaznymy pidvodnymy systemamy z nachipnym obladnannyam. Zbirnyk naukovykh prats' NUK, №2, 79-83.

Published

2013-10-29

How to Cite

Надточій, В. А. (2013). Self-propelled underwater system control integration within maritime technological complex. Eastern-European Journal of Enterprise Technologies, 5(4(65), 40–45. https://doi.org/10.15587/1729-4061.2013.18342

Issue

Section

Mathematics and Cybernetics - applied aspects