DOI: https://doi.org/10.15587/1729-4061.2019.184530

Forming a methodology of basic matrices in the study of poorly conditioned linear systems

Volodymyr Kudin, Viacheslav Onotskyi, Andriy Onyshchenko, Yurii Stupak

Abstract


Algorithm of the basic matrix method for analysis of properties of the system of linear arithmetic equation (SLAE) in various changes introduced in the model, in particular, when including-excluding a group of rows and columns (based on "framing") without re-solving the problem from beginning has been improved. Conditions of compatibility (incompatibility) of restrictions were established and vectors of the fundamental solution system in a case of compatibility were established. Influence of accuracy of representing the model elements (mantis length, order value, thresholds of machine zero and overflow) and variants of computation organization on solution properties was studied. Specifically, effect of magnitude and completeness of rank was studied on an example of a SLAE with a poorly conditioned constraint matrix. A program was developed for implementation of conducting calculations using the basic matrix methods (BMM) and Gauss method, that is, long arithmetic was used for models with rational elements. Algorithms and computer-aided implementation of Gaussian methods and artificial basic matrices (as a variant of the basic matrix method) in MATLAB and Visual C++ environments with the use of the technology of exact calculation of the method elements, first of all, for poorly conditioned systems with different dimensions were proposed.

Using as an example Hilbert matrices, which are characterized as "inconvenient" matrices, an experiment was conducted to analyze properties of a linear system at different dimensions, accuracy of the input data and computation scenarios. Formats ("exact" and "inexact") of representation of model elements (mantis length, order value, thresholds of machine zero and overflow) as well as variants of organization of basic computation operations during calculation and their influence on solution properties have been developed. In particular, influence of rank magnitude and completeness was traced on an example of an SLAE with a poorly conditioned constraint matrix

Keywords


basic matrix method; rectangular constraint matrix; poorly conditioned SLAE

References


Demmel, J. W. (1997). Applied Numerical Linear Algebra. SIAM, 416. doi: https://doi.org/10.1137/1.9781611971446

IEEE Standart for Binary Floating-Point Arithmetics, Std 754-1985 (1985). New York, 20.

Schrijver, А. (2000). Theory of Linear and integer Programming. John Wiley & Sons.

Dantzig, G. B., Thapa, M. N. (2003). Linear Programming 2: Theory and Extensions. Springer, 448. doi: https://doi.org/10.1007/b97283

Han, D., Zhang, J. (2007). A comparison of two algorithms for predicting the condition number. Sixth International Conference on Machine Learning and Applications (ICMLA 2007). doi: https://doi.org/10.1109/icmla.2007.8

Ebrahimian, R., Baldick, R. (2001). State Estimator Condition Number Analysis. IEEE Power Engineering Review, 21 (5), 64–64. doi: https://doi.org/10.1109/mper.2001.4311389

Nishi, T., Rump, S., Oishi, S. (2013). A consideration on the condition number of extremely ill-conditioned matrices. 2013 European Conference on Circuit Theory and Design (ECCTD). doi: https://doi.org/10.1109/ecctd.2013.6662260

BLAS (Basic Linear Algebra Subprograms). Available at: http://www.netlib.org/blas/sblat1

Kudin, V. I., Lyashko, S. I., Hritonenko, N. M., Yatsenko, Yu. P. (2007). Analiz svoystv lineynoy sistemy metodom iskusstvennyh bazisnih matrits. Kibernetika i sistemnyy analiz, 4, 119–127.

Kudin, V., Onotskyi, V., Al-Ammouri, A., Shkvarchuk, L. (2019). Advancement of a long arithmetic technology in the construction of algorithms for studying linear systems. Eastern-European Journal of Enterprise Technologies, 1 (4 (97)), 14–22. doi: https://doi.org/10.15587/1729-4061.2019.157521

Kudin, V., Onyshchenko, A., Onyshchenko, I. (2019). Algorithmizing the methods of basis matrices in the study of balace intersectoral ecological and economic models. Eastern-European Journal of Enterprise Technologies, 3 (4 (99)), 45–55. doi: https://doi.org/10.15587/1729-4061.2019.170516

Zadeh, L. A., Fu, K.-S., Tanaka, K. (Eds.) (1975). Fuzzy Sets and Their Applications to Cognitive and Decision Processes. Academic Press, 506.

Zimmerman, H.-J. (1983). Using fuzzy sets in operational research. European Journal of Operational Research, 13 (3), 201–216. doi: https://doi.org/10.1016/0377-2217(83)90048-6

Paket prykladnykh prohram z chyselnoho modeliuvannia ta obchysliuvalnoi matematyky. Available at: http://www.vingar.ho.ua/for_students/Package1.zip


GOST Style Citations








Copyright (c) 2019 Volodymyr Kudin, Viacheslav Onotskyi, Andriy Onyshchenko, Yurii Stupak

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN (print) 1729-3774, ISSN (on-line) 1729-4061