Improving efficiency in determining the inductance for the active part of an electric machine's armature by methods of field modeling

Authors

DOI:

https://doi.org/10.15587/1729-4061.2019.185136

Keywords:

electric machine, electromagnetic field, inductive parameters, three-dimensional field model

Abstract

Theoretical studies of electromagnetic processes in the active part of an electric machine's armature have been carried out in a dynamic short-circuit mode using a three-dimensional magnetic field model represented as a combination of electrical circuits of phase windings and a geometric 3D region. An approach was proposed to determine self- and mutual inductances between phases of the electric machine armature winding based on decomposition of electromagnetic processes by means of various combinations of powering the armature phase windings. Laws of electromagnetic processes resulting from self- and mutual effects of the armature phase currents causing appearance of effects of self- and mutual induction with and without taking into account magnetic properties of materials were established. The phenomena of self induction in phases of the armature winding, formation of components of induced currents in the phase as a result of action of currents in neighboring phases and their magnetizing and demagnetizing properties were considered. Influence of these processes leads to an asymmetry of the systems of mutual inductance between the winding phases. However, symmetry of total inductance of the armature phase windings is not violated. To determine with high accuracy inductive parameters of the electric machine armature winding according to the classical method, corresponding correction coefficients were proposed. This will minimize current errors and ensure adequacy of known widely used three- and two-phase models of electric machines based on systems of differential equations of the first order. Reliability and accuracy of the data obtained in 3D modeling of magnetic fields were confirmed by the results of physical tests. When taking into account magnetic properties of materials used in the active part of the electric machine armature, relative current errors did not exceed 2.68÷2.91 % and when magnetic properties were not taken in account, the errors measured 103.09÷106.32 %

Author Biographies

Mykhailo Kotsur, Zaporizhzhia Polytechnic National University Zhukovskoho str., 64, Zaporizhzhia, Ukraine, 69063

PhD, Associate Professor

Department of Electrical and Electronic Apparatuses

Dmytro Yarymbash, Zaporizhzhia Polytechnic National University Zhukovskoho str., 64, Zaporizhzhia, Ukraine, 69063

Doctor of Technical Sciences, Associate Professor

Department of Electrical Machines

Igor Kotsur, Zaporizhzhia Polytechnic National University Zhukovskoho str., 64, Zaporizhzhia, Ukraine, 69063

PhD, Associate Professor

Department of Electrical Machines

Serhiy Yarymbash, Zaporizhzhia Polytechnic National University Zhukovskoho str., 64, Zaporizhzhia, Ukraine, 69063

PhD, Associate Professor

Department of Electrical Machines

References

  1. Kopylov, I. P., Klokov, B. K., Morozkin, V. P. (2005). Proektirovanie elektricheskih mashin. Moscow: Vysshaya shkola, 767.
  2. Ivanov-Smolenskiy, A. V. (2006). Elektricheskie mashiny. Moscow: Izdatel'skiy dom MEI, 532.
  3. Ledovskiy, A. N. (1985). Elektricheskie mashiny s vysokokoertsitivnymi postoyannymi magnitami. Moscow: Energoatomizdat, 168.
  4. Grebenikov, V. V., Pryymak, M. V. (2009). Issledovanie vliyaniya konfiguratsii magnitnoy sistemy na momentnye harakteristiki elektrodvigateley s postoyannymi magnitami. Elektrotehnika i elektroenergetika, 2, 57–60.
  5. Lushchyk, V. D., Ivanenko, V. S. (2011). Bahatopoliusni kaskadni synkhronni mashyny. Elektromekhanichni i enerhozberihaiuchi systemy, 2, 116–123.
  6. Kopylov, I. P. (2001). Matematicheskoe modelirovanie elektricheskih mashin. Moscow: Vysshaya shkola, 327.
  7. Tolochko, O. I., Ryzhkov, A. M. (2018). Synthesis and analysis of modal control system for crane mechanism motion taking into account the work of lifting mechanism. Tekhnichna Elektrodynamika, 2018 (4), 131–134. doi: https://doi.org/10.15407/techned2018.04.131
  8. Kotsur, M. I., Andrienko, P. D., Kotsur, I. M., Bliznyakov, O. V. (2017). Converter for frequency-current slip-power recovery scheme. Scientific Bulletin of National Mining University, 4, 49–54.
  9. Tykhovod, S. M. (2014). Transients modeling in transformers on the basis of magnetoelectric equivalent circuits. Electrical Engineering and Power Engineering, 2, 59–68. doi: https://doi.org/10.15588/1607-6761-2014-2-8
  10. Tolochko, O. I., Buhrovyi, A. A. (2016). Improving dynamic of the system based on permanent magnet synchronous motor using optimal control strategies. Tekhnichna Elektrodynamika, 2016 (5), 35–37. doi: https://doi.org/10.15407/techned2016.05.035
  11. German-Galkin, S. G. (2008). Matlab & Simulink. Proektirovanie mehatronnyh sistem na PK. Sankt-Peterburg: KORONA-VEK, 368.
  12. Yu, D., Huang, X., Wu, L., Fang, Y. (2019). Design and Analysis of Outer Rotor Permanent-Magnet Vernier Machines with Overhang Structure for In-Wheel Direct-Drive Application. Energies, 12 (7), 1238. doi: https://doi.org/10.3390/en12071238
  13. Wardach, M., Paplicki, P., Palka, R. (2018). A Hybrid Excited Machine with Flux Barriers and Magnetic Bridges. Energies, 11 (3), 676. doi: https://doi.org/10.3390/en11030676
  14. Han, G., Chen, H., Shi, X. (2017). Modelling, diagnosis, and tolerant control of phase-to-phase fault in switched reluctance machine. IET Electric Power Applications, 11 (9), 1527–1537. doi: https://doi.org/10.1049/iet-epa.2017.0185
  15. Bezverkhnia, Yu. S. (2019). A voltage loss preliminary estimation in ac busbars. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 4, 73–78. doi: https://doi.org/10.29202/nvngu/2019-4/13
  16. Yarymbash, D., Yarymbash, S., Kylymnyk, I., Divchuk, T., Litvinov, D. (2017). Features of defining three-phase transformer no-load parameters by 3D modeling methods. 2017 International Conference on Modern Electrical and Energy Systems (MEES). doi: https://doi.org/10.1109/mees.2017.8248870
  17. Paiva Jr, R. D., Silva, V. C., Nabeta, S. I., Chabu, I. E. (2017). Magnetic topology with axial flux concentration: a technique to improve permanent-magnet motor performance. Journal of Microwaves, Optoelectronics and Electromagnetic Applications, 16 (4), 881–899. doi: https://doi.org/10.1590/2179-10742017v16i4957
  18. Meng, X., Wang, S., Qiu, J., Zhu, J. G., Guo, Y. (2010). Cogging torque reduction of Bldc motor using level set based topology optimization incorporating with triangular finite element. International Journal of Applied Electromagnetics and Mechanics, 33 (3-4), 1069–1076. doi: https://doi.org/10.3233/jae-2010-1222
  19. Shkarupylo, V., Skrupsky, S., Oliinyk, A., Kolpakova, T. (2017). Development of stratified approach to software defined networks simulation. Eastern-European Journal of Enterprise Technologies, 5 (9 (89)), 67–73. doi: https://doi.org/10.15587/1729-4061.2017.110142
  20. Aden Diriyé, A., Amara, Y., Barakat, G., Hlioui, S., De la Barrière, O., Gabsi, M. (2016). Performance analysis of a radial flux PM machine using a hybrid analytical model and a MBG reluctance network model. European Journal of Electrical Engineering, 18 (1-2), 9–26. doi: https://doi.org/10.3166/ejee.18.9-26
  21. Kotsur, M., Yarymbash, D., Yarymbash, S., Kotsur, I. (2017). A new approach of the induction motor parameters determination in short-circuit mode by 3D electromagnetic field simulation. 2017 IEEE International Young Scientists Forum on Applied Physics and Engineering (YSF). doi: https://doi.org/10.1109/ysf.2017.8126620
  22. Yarymbash, D., Kotsur, M., Subbotin, S., Oliinyk, A. (2017). A new simulation approach of the electromagnetic fields in electrical machines. 2017 International Conference on Information and Digital Technologies (IDT). doi: https://doi.org/10.1109/dt.2017.8024332
  23. Benhamida, M. A., Ennassiri, H., Amara, Y. (2018). Reluctance network lumped mechanical & thermal models for the modeling and predesign of concentrated flux synchronous machine. Open Physics, 16 (1), 692–705. doi: https://doi.org/10.1515/phys-2018-0088
  24. Thul, A., Steentjes, S., Schauerte, B., Klimczyk, P., Denke, P., Hameyer, K. (2018). Rotating magnetizations in electrical machines: Measurements and modeling. AIP Advances, 8 (5), 056815. doi: https://doi.org/10.1063/1.5007751
  25. Yazdani-Asrami, M., Gholamian, S. A., Mirimani, S. M., Adabi, J. (2018). Calculation of AC Magnetizing Loss of ReBCO Superconducting Tapes Subjected to Applied Distorted Magnetic Fields. Journal of Superconductivity and Novel Magnetism, 31 (12), 3875–3888. doi: https://doi.org/10.1007/s10948-018-4695-7
  26. Yarymbash, D., Yarymbash, S., Kotsur, M., Divchuk, T. (2018). Analysis of inrush currents of the unloaded transformer using the circuit­field modelling methods. Eastern-European Journal of Enterprise Technologies, 3 (5 (93)), 6–11. doi: https://doi.org/10.15587/1729-4061.2018.134248
  27. Yarymbash, D., Yarymbash, S., Kotsur, M., Divchuk, T. (2018). Enhancing the effectiveness of calculation of parameters for short circuit of three­phase transformers using field simulation methods. Eastern-European Journal of Enterprise Technologies, 4 (5 (94)), 22–28. doi: https://doi.org/10.15587/1729-4061.2018.140236
  28. Yarymbash, D., Kotsur, M., Bezverkhnia, Y., Yarymbash, S., Kotsur, I. (2018). Parameters Determination of the Trolley Busbars by Electromagnetic Field Simulation. 2018 IEEE 3rd International Conference on Intelligent Energy and Power Systems (IEPS). doi: https://doi.org/10.1109/ieps.2018.8559576
  29. Yarymbash, D., Kotsur, M., Yarymbash, S., Kylymnyk, I. (2018). An Error Estimation Of The Current Sensors Of The Automated Control System Of The Technological Process Of Graphitation. 2018 IEEE 3rd International Conference on Intelligent Energy and Power Systems (IEPS). doi: https://doi.org/10.1109/ieps.2018.8559489
  30. Yarymbash, D., Kotsur, M., Yarymbash, S., Divchuk, T. (2018). Electromagnetic Parameters Determination of Power Transformers. 2018 IEEE 3rd International Conference on Intelligent Energy and Power Systems (IEPS). doi: https://doi.org/10.1109/ieps.2018.8559573
  31. Kotsur, M., Kotsur, I., Bezverkhnia, Y., Andrienko, D. (2017). Increasing of thermal reliability of a regulated induction motor in non-standard cycle time conditions. 2017 International Conference on Modern Electrical and Energy Systems (MEES). doi: https://doi.org/10.1109/mees.2017.8248960
  32. Jacques, K., Steentjes, S., Henrotte, F., Geuzaine, C., Hameyer, K. (2018). Representation of microstructural features and magnetic anisotropy of electrical steels in an energy-based vector hysteresis model. AIP Advances, 8 (4), 047602. doi: https://doi.org/10.1063/1.4994199
  33. Leuning, N., Steentjes, S., Stöcker, A., Kawalla, R., Wei, X., Dierdorf, J. et. al. (2018). Impact of the interaction of material production and mechanical processing on the magnetic properties of non-oriented electrical steel. AIP Advances, 8 (4), 047601. doi: https://doi.org/10.1063/1.4994143
  34. Stepanenko, A., Oliinyk, A., Deineha, L., Zaiko, T. (2018). Development of the method for decomposition of superpositions of unknown pulsed signals using the second­order adaptive spectral analysis. Eastern-European Journal of Enterprise Technologies, 2 (9 (92)), 48–54. doi: https://doi.org/10.15587/1729-4061.2018.126578

Downloads

Published

2019-11-27

How to Cite

Kotsur, M., Yarymbash, D., Kotsur, I., & Yarymbash, S. (2019). Improving efficiency in determining the inductance for the active part of an electric machine’s armature by methods of field modeling. Eastern-European Journal of Enterprise Technologies, 6(5 (102), 39–47. https://doi.org/10.15587/1729-4061.2019.185136

Issue

Section

Applied physics