Degradation of CdTe SC during operation: modeling and experiment

Authors

DOI:

https://doi.org/10.15587/1729-4061.2019.185628

Keywords:

cadmium telluride, solar cell degradation, output parameters, light-emitting diode characteristics

Abstract

The mechanisms of CdTe SС degradation during operation are experimentally studied. Two mechanisms of degradation of such solar cells are identified. The first is the generation of defects in the transition region, which is caused by excess charge carriers and defects. The second is the increase in the back barrier. The study of the current-voltage and voltage-capacitance characteristics of solar cells allowed proposing a model of degradation of solar cells based on CdTe. It is found that the presence of copper in the back contact is associated with better initial efficiency, but also the fastest degradation during operation. In accordance with the proposed model, the occurrence of additional elementary defects as a result of dissociation of three types of point defect complexes (Cui+–2CuCd), (VCd2–Cui+), (2CuCd–VTe+) is explained. Shunting of the n-p heterojunction and phase transformations from the p+-Cu2-xTe side due to electrodiffusion of CuCd with p-CdTe at the n-CdS/p-CdTe and p-CdTe/p+-Cu2-xTe boundaries is considered. On the other hand, the diffusion of Cui+ (interstitial copper) into the absorber volume is possible. Electrodiffusion of defects from heterojunctions to the absorber volume is possible, which leads to the compensation of effective acceptor centers and a decrease in the lifetime of minority charge carriers and, accordingly, a decrease in Jph. In addition, there is a growth of shunting metal chains along the longitudinal grain boundaries of p-CdTe between n-p and р-р+ heterojunctions and the possibility of appearance of high-resistance phases of the Cu-Te system. The proposed model explains the possibility of occurrence of the р+ Cu2–δS phase on the CdS/CdTe boundary, which constrains the passage of the photoactive part of the solar spectrum in p-CdTe

Author Biographies

Olexander Bolbas, Research, Design and Technology Institute of Micrography Akademika Pidhornoho lane, 1/60, Kharkiv, 61046

Head of Department

Natalya Deyneko, National University of Civil Defence of Ukraine Chernyshevska str., 94, Kharkiv, Ukraine, 61023

PhD, Associate Professor

Scientific Department on Problems of Civil Defense, Technogenic and Ecological Safety

Sergey Yeremenko, Institute of Public Administration in the Field of Civil Protection Vyshgorodska str., 21, Kyiv, Ukraine, 04074

PhD, Associate Professor

Olena Kyryllova, Odessa National Maritime University Mechnikova str., 34, Odessa, Ukraine, 65029

Doctor of Technical Sciences, Associate Professor, Head of Department

Department of Port Operations and Cargo Handling Technology

Oksana Myrgorod, National University of Civil Defence of Ukraine Chernyshevska str., 94, Kharkiv, Ukraine, 61023

PhD, Associate Professor

Department of Fire Prevention in Settlements

Olexander Soshinsky, National University of Civil Defence of Ukraine Chernyshevska str., 94, Kharkiv, Ukraine, 61023

PhD

Scientific Department on Problems of Civil Defense, Technogenic and Ecological Safety

Nataliya Teliura, O. M. Beketov National University of Urban Economy in Kharkiv Marshala Bazhanova str., 17, Kharkiv, Ukraine, 61002

Senior Lecturer

Department of Environmental Engineering

Nataliia Tsapko, Ukrainian Scientific-Research Institute of Environmental Problems Bakulina str., 6, Kharkiv, Ukraine, 61166

PhD, Associate Professor, Head of Department

International Cooperation and Scientific and Technical Information

Roman Shevchenko, National University of Civil Defence of Ukraine Chernyshevska str., 94, Kharkiv, Ukraine, 61023

PhD, Senior Researcher

Scientific Department on Problems of Civil Defense, Technogenic and Ecological Safety

Yuliia Yurchyk, Research, Design and Technology Institute of Micrography Akademika Pidhornoho lane, 1/60, Kharkiv, 61046

Technological Engineer І Category

References

  1. Inganäs, O., Sundström, V. (2015). Solar energy for electricity and fuels. Ambio, 45 (S1), 15–23. doi: https://doi.org/10.1007/s13280-015-0729-6
  2. Deyneko, N., Semkiv, O., Khmyrov, I., Khryapynskyy, A. (2018). Investigation of the combination of ITO/CdS/CdTe/Cu/Au solar cells in microassembly for electrical supply of field cables. Eastern-European Journal of Enterprise Technologies, 1 (12 (91)), 18–23. doi: https://doi.org/10.15587/1729-4061.2018.124575
  3. Khrypunov, G., Meriuts, A., Klyui, N., Shelest, T., Deyneko, N., Kovtun, N. (2010). Development of back contact for CdS/CdTe thin-film solar cells. Functional Materials, 17 (1), 114–119.
  4. Watthage, S. C., Phillips, A. B., Liyanage, G. K., Song, Z., Gibbs, J. M., Alfadhili, F. K. et. al. (2018). Selective Cd Removal From CdTe for High-Efficiency Te Back-Contact Formation. IEEE Journal of Photovoltaics, 8 (4), 1125–1131. doi: https://doi.org/10.1109/jphotov.2018.2830302
  5. Cardinaletti, I., Vangerven, T., Nagels, S., Cornelissen, R., Schreurs, D., Hruby, J. et. al. (2018). Organic and perovskite solar cells for space applications. Solar Energy Materials and Solar Cells, 182, 121–127. doi: https://doi.org/10.1016/j.solmat.2018.03.024
  6. Miyazawa, Y., Ikegami, M., Chen, H.-W., Ohshima, T., Imaizumi, M., Hirose, K., Miyasaka, T. (2018). Tolerance of Perovskite Solar Cell to High-Energy Particle Irradiations in Space Environment. iScience, 2, 148–155. doi: https://doi.org/10.1016/j.isci.2018.03.020
  7. Aierken, A., Fang, L., Heini, M., Zhang, Q. M., Li, Z. H., Zhao, X. F. et. al. (2018). Effects of proton irradiation on upright metamorphic GaInP/GaInAs/Ge triple junction solar cells. Solar Energy Materials and Solar Cells, 185, 36–44. doi: https://doi.org/10.1016/j.solmat.2018.04.035
  8. Krishnan, S., Sanjeev, G., Pattabi, M., Mathew, X. (2009). Effect of electron irradiation on the properties of CdTe/CdS solar cells. Solar Energy Materials and Solar Cells, 93 (1), 2–5. doi: https://doi.org/10.1016/j.solmat.2007.12.002
  9. Hirose, Y., Warasawa, M., Tsunoda, I., Takakura, K., Sugiyama, M. (2012). Effects of Proton Irradiation on Optical and Electrical Properties of Cu(In,Ga)Se2 Solar Cells. Japanese Journal of Applied Physics, 51 (11R), 111802. doi: https://doi.org/10.7567/jjap.51.111802
  10. Bätzner, D. L., Romeo, A., Terheggen, M., Döbeli, M., Zogg, H., Tiwari, A. N. (2004). Stability aspects in CdTe/CdS solar cells. Thin Solid Films, 451-452, 536–543. doi: https://doi.org/10.1016/j.tsf.2003.10.141
  11. Abramov, Y., Basmanov, O., Salamov, J., Mikhayluk, A., Yashchenko, O. (2019). Developing a model of tank cooling by water jets from hydraulic monitors under conditions of fire. Eastern-European Journal of Enterprise Technologies, 1 (10 (97)), 14–20. doi: https://doi.org/10.15587/1729-4061.2019.154669
  12. Chander, S., Purohit, A., Lal, C., Dhaka, M. S. (2017). Enhancement of optical and structural properties of vacuum evaporated CdTe thin films. Materials Chemistry and Physics, 185, 202–209. doi: https://doi.org/10.1016/j.matchemphys.2016.10.024
  13. Demtsu, S. H., Albin, D. S., Pankow, J. W., Davies, A. (2006). Stability study of CdS/CdTe solar cells made with Ag and Ni back-contacts. Solar Energy Materials and Solar Cells, 90 (17), 2934–2943. doi: https://doi.org/10.1016/j.solmat.2006.05.007
  14. Rotlevi, O., Dobson, K. D., Rose, D., Hodes, G. (2001). Electroless Ni and NiTe2 ohmic contacts for CdTe/CdS PV cells. Thin Solid Films, 387 (1-2), 155–157. doi: https://doi.org/10.1016/s0040-6090(00)01738-7
  15. Deyneko, N., Khrypunov, G., Semkiv, O. (2018). Photoelectric Processes in Thin-film Solar Cells Based on CdS/CdTe with Organic Back Contact. Journal of Nano- and Electronic Physics, 10 (2), 02029-1–02029-4. doi: https://doi.org/10.21272/jnep.10(2).02029
  16. Bätzner, D. L., Romeo, A., Zogg, H., Tiwari, A. N., Wendt, R. (2000). Flexible CdTe solar cells on polymer films. 16th European Photovoltaic Solar Energy Conference, Glasgow, 353–356.
  17. Romeo, N., Bosio, A., Tedeschi, R. (1998). High-efficiency and stable CdTe/CdS thin-film solar cells on soda lime glass. 2nd World Conference and Exhibition on Photovoltaic Solar Energy Conversion. Vienna, 446–449.
  18. Hiltner, J. F., Sites, J. R. (1998). Stability of CdTe solar cells at elevated temperatures: Bias, temperature, and Cu dependence. AIP Conference Proceedings, 462, 170–175. doi: https://doi.org/10.1063/1.57895
  19. Khrypunov, G., Vambol, S., Deyneko, N., Sychikova, Y. (2016). Increasing the efficiency of film solar cells based on cadmium telluride. Eastern-European Journal of Enterprise Technologies, 6 (5 (84)), 12–18. doi: https://doi.org/10.15587/1729-4061.2016.85617
  20. Deyneko, N., Kovalev, P., Semkiv, O., Khmyrov, I., Shevchenko, R. (2019). Development of a technique for restoring the efficiency of film ITO/CdS/CdTe/Cu/Au SCs after degradation. Eastern-European Journal of Enterprise Technologies, 1 (5 (97)), 6–12. doi: https://doi.org/10.15587/1729-4061.2019.156565
  21. Deyneko, N., Semkiv, O., Soshinsky, O., Streletc, V., Shevchenko, R. (2018). Results of studying the Cu/ITO transparent back contacts for solar cells SnO2:F/CdS/CdTe/Cu/ITO. Eastern-European Journal of Enterprise Technologies, 4 (5 (94)), 29–34. doi: https://doi.org/10.15587/1729-4061.2018.139867
  22. Pavlov, L. P. (1987). Metody izmereniya parametrov poluprovodnikovyh materialov. Moscow: Vysshaya shkola, 239.
  23. Agostinell, G., Batzner, D. L., Burgelman, M. (2002). An alternative model for V, G and T dependence of CdTe solar cells IV characteristics. Conference Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conference, 2002. doi: https://doi.org/10.1109/pvsc.2002.1190672
  24. Niemegeers, A., Burgelman, M. (1997). Effects of the Au/CdTe back contact on IV and CV characteristics of Au/CdTe/CdS/TCO solar cells. Journal of Applied Physics, 81 (6), 2881–2886. doi: https://doi.org/10.1063/1.363946

Downloads

Published

2019-12-02

How to Cite

Bolbas, O., Deyneko, N., Yeremenko, S., Kyryllova, O., Myrgorod, O., Soshinsky, O., Teliura, N., Tsapko, N., Shevchenko, R., & Yurchyk, Y. (2019). Degradation of CdTe SC during operation: modeling and experiment. Eastern-European Journal of Enterprise Technologies, 6(12 (102), 46–51. https://doi.org/10.15587/1729-4061.2019.185628

Issue

Section

Materials Science