Determining the effect of the composition of an aluminosilicate binder on the rheotechnological properties of adhesives for wood

Authors

DOI:

https://doi.org/10.15587/1729-4061.2019.185728

Keywords:

aluminosilicate adhesive, dynamic and plastic viscosity, surface tension, wetting angle, shear force, wood backing

Abstract

Main rheotechnological properties of aluminosilicate adhesives for gluing wood arrays have been investigated. It was established that for adhesives based on the alkaline aluminosilicate binding agent with a composition of Na2O×Al2O3×4.5SiO2×17.5H2O dynamic viscosity in the range of speeds from 0 to 200 RPM varies from 6.933 sP to 368.4 Sp, and the mean plastic viscosity takes the magnitude of 86.27 sP. At the same value of surface tension and cohesive work, the smallest angle of wetting (cosQ=0.7973) and the largest coefficients of wetting (s=0.8986) and spreadability (f=–6.5 mN/m), as well as the work of adhesion forces (Wa=58.23 mN/m), wetting (Wa=58.23 mN/m), are demonstrated by beech backing, followed by alder, ash, pine, birch, and oak.

For adhesives based on the alkaline aluminosilicate binding agent with a composition of Na2O×Al2O3×6SiO2×20H2O dynamic viscosity in the speed range from 0 to 200 RPM varies from 5.340 sP to 374.4 sP, and the mean plastic viscosity takes the magnitude of 85.72 sP. At the same value of surface tension and cohesive work, the smallest angle of wetting (cosQ=0.5876) and the largest coefficients of wetting (s=0.7938) and spreadability (f=–19.34 mN/m), as well as the work of adhesion forces (Wa=74.46 mN/m), wetting (Ww=27.56 mN/m), are demonstrated by alder backing, followed by pine, oak, birch, beech, and ash.

For the adhesive with a composition of Na2O×Al2O3×4.5SiO2×17.5H2O, at low values of shear rate, from 0.0378 to 1.05 1/sec, the shear force increases from 26.21 dyne/cm2 to 48.64 dyne/cm2. The data obtained significantly exceed the same indicators for a liquid glass at high shear rates, from 14 to 39 1/sec. For the adhesive with a composition of Na2O×Al2O3×6SiO2×20H2O, at low shear speeds there is a sharp increase in the shear effort, from 40 to 110 dyne cm2. This is due to the dispersion processes in the silica component. At an increase in the shear speed values from 5 to 42 1/sec, the shear effort increases from 110 to 158 dyne/cm2. This relates to the stabilization of viscosity values with the formation of a homogeneous adhesive structure

Author Biographies

Sergii Guzii, Kyiv National University of Construction and Architecture Povitroflotsky ave., 31, Kyiv, Ukraine, 03037

PhD, Senior Researcher

V. D. Glukhovsky Scientific Research Institute of Binders and Materials

Pavlo Kryvenko, Kyiv National University of Construction and Architecture Povitroflotsky ave., 31, Kyiv, Ukraine, 03037

Doctor of Technical Sciences, Professor

V. D. Glukhovsky Scientific Research Institute of Binders and Materials

Olena Guzii, Kyiv National University of Construction and Architecture Povitroflotsky ave., 31, Kyiv, Ukraine, 03037

Technician

Sergey Yushkevich, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" Peremohy ave., 37, Kyiv, Ukraine, 03056

Department of Chemical Technology of Ceramics and Glass

References

  1. Hrulev, V. M. (Ed.) (1983). Derevyannye konstruktsii i detali. Moscow: Stroyizdat, 288.
  2. Vernigorova, V. N., Sadenko, S. M. (2014). Klei i skleivanie. Penza: PGUAS, 120.
  3. Tambi, A. A., Chubinsky, A. N., Chauzov, K. V., Kulikov, A. M. (2016). Research of adhesive bond of wood. Forestry bulletin, 2, 120–126.
  4. Rindler, A., Hansmann, C., Konnerth, J. (2019). The effect of moisture on the mechanical response of wood, adhesive and their interphase by means of nanoindentation. Wood Science and Technology, 53 (4), 729–746. doi: https://doi.org/10.1007/s00226-019-01100-4
  5. Ülker, O. (2016). Wood Adhesives and Bonding Theory. Adhesives - Applications and Properties. doi: https://doi.org/10.5772/65759
  6. Pizzi, A. (1994). Advanced Wood Adhesives Technology. New York, 304.
  7. Frihart, C. R. (2015). Introduction to Special Issue: Wood Adhesives: Past, Present, and Future. Forest Products Journal, 65 (1-2), 4–8. doi: https://doi.org/10.13073/65.1-2.4
  8. Liu, X., Zhang, X., Long, K., Zhu, X., Yang, J., Wu, Y. et. al. (2012). PVA wood adhesive modified with sodium silicate cross-linked copolymer. Proceedings of 2012 International Conference on Biobase Material Science and Engineering. doi: https://doi.org/10.1109/bmse.2012.6466192
  9. Krivenko, P., Petropavlovsky, О., Vozniuk, G. (2018). Alkaline Aluminosilicate Binder for Gluing Wood Board Materials. Key Engineering Materials, 761, 11–14. doi: https://doi.org/10.4028/www.scientific.net/kem.761.11
  10. Sychev, M. M. (1986). Neorganicheskie klei. Leningrad: Himiya, 152.
  11. Poddenezhniy, E. N., Boyko, A. A., Pahovchishin, S. V. (2003). Reologiya kompozitsionnyh kremnezemsoderzhashchih kolloidnyh sistem i modelirovanie protsessov ih destabilizatsii. Vestnik Gomel'skogo gosudarstvennogo tehnicheskogo universiteta im. P.O. Suhogo, 3, 20–27.
  12. Zakordonskiy, V., Lazaruk, B. (2014). Processes of aggregation and rheology of aerosil A-175 dispersions, modified by polyethyleneoxide. Visnyk of the Lviv University. Series Chemistry, 55 (2), 472–485.
  13. Amorós, J. L., Beltrán, V., Sanz, V., Jarque, J. C. (2010). Electrokinetic and rheological properties of highly concentrated kaolin dispersions: Influence of particle volume fraction and dispersant concentration. Applied Clay Science, 49 (1-2), 33–43. doi: https://doi.org/10.1016/j.clay.2010.03.020
  14. Zdorenko, N. M. (2009). Reotehnologicheskie svoystva kaolinitovyh i kaolinit-gidroslyudistyh glinistyh mass s kompleksnoy organomineral'noy dobavkoy. Belgorod, 140.
  15. Klimosh, Yu. A., Levitskiy, I. A. (2011). Reologicheskie svoystva shlikerov na osnove polimineral'nyh glin s dobavkoy elektrolitov. Steklo i keramika, 4, 19–22.
  16. McIntyre, E. C., Filisko, F. E. (2009). Squeeze Flow Rheology of Zeolite Suspensions. Applied Rheology, 19 (4), 44322-1–44322-8. doi: https://doi.org/10.1515/arh-2009-0016
  17. Provis, J. L, van Deventer, S. J. (2009). Geopolymers: Structures, Processing, Properties and Industrial Applications. Elsevier, 464. doi: https://doi.org/10.1533/9781845696382
  18. Krivenko, P., Guzii, S. (2018). The effect of modifying additives on the modulus of elasticity and strength of adhesives based on an alkaline aluminosilicate binder. Proceed. of the 20. Ibausil. Internationale Baustofftagung. Weimar, 2-1213–2-1218.
  19. Zacahua-Tlacuatl, G., Pérez-González, J., Javier Castro-Arellano, J., Balmori-Ramírez, H. (2010) Rheological Characterization and Extrusion of Suspensions of Natural Zeolites. Applied Rheology, 20 (3), 34037-1–34037-10. doi: http://doi.org/10.3933/ApplRheol-20-34037
  20. Guzii, S., Hela, R., Kyrychok, V. (2013). Rehabilitation of Concrete Surfaces of Hydropower Engineering Structures Deteriorated by Soft Corrosion and Cavitation. Advanced Materials Research, 688, 107–112. doi: https://doi.org/10.4028/www.scientific.net/amr.688.107
  21. Krivenko, P., Guziy, S., Abdullah Al Musa, J. (2015). The Influence of Cavitation Treatment on Amorphization of Kaolinite in the Dispersion of the “Kaolin–Na2O · nSiO2 · mH2O–NaOH–H2O” Composition. Calcined Clays for Sustainable Concrete, 387–393. doi: https://doi.org/10.1007/978-94-017-9939-3_48
  22. Krivenko, P. V., Guzii, S., Hela, R. (2017). The Influence of Cavitation Treatment on Nano Structuring of Alkali Aluminosilicate Binder for Intumescent Coatings. Materials Science Forum, 908, 63–70. doi: https://doi.org/10.4028/www.scientific.net/msf.908.63
  23. Martyntsev, V., Guzii, S., Nazarenko, I., Glyva, V., Guzii, O. (2017). Investigation of rheo-mechanical properties of cement suspensions activated in a hydrodynamic cavitator. Technology Audit and Production Reserves, 6 (3 (38)), 18–25. doi: https://doi.org/10.15587/2312-8372.2017.119479
  24. Kryvenko, P., Volodymyr, K., Guzii, S. (2016). Influence of the ratio of oxides and temperature on the structure formation of alkaline hydro-aluminosilicates. Eastern-European Journal of Enterprise Technologies, 5 (5 (83)), 40–48. doi: https://doi.org/10.15587/1729-4061.2016.79605
  25. Barrer, R. (1982). Hydrothermal chemistry of zeolites. Academic Press, 360.
  26. Mejía de Gutiérrez, R., Trochez, J. J., Rivera, J., Bernal, S. A. (2015). Synthesis of geopolymer from spent FCC: Effect of SiO2/Al2O3 and Na2O/SiO2 molar ratios. Materiales de Construcción, 65 (317), e046. doi: https://doi.org/10.3989/mc.2015.00814
  27. Kravchenko, A., Guzii, S. (2015). Determining the fire resistance properties of timber, protected by geocement-based coatings. Eastern-European Journal of Enterprise Technologies, 1 (5 (73)), 38–41. doi: https://doi.org/10.15587/1729-4061.2015.36843
  28. Krivenko, P. V., Guzii, S. G., Bodnarova, L., Valek, J., Hela, R., Zach, J. (2016). Effect of thickness of the intumescent alkali aluminosilicate coating on temperature distribution in reinforced concrete. Journal of Building Engineering, 8, 14–19. doi: https://doi.org/10.1016/j.jobe.2016.09.003
  29. Krivenko, P. V., Guzii, S. G., Bondarenko, O. P. (2019). Alkaline Aluminosilicate Binder-Based Adhesives with Increased Fire Resistance for Structural Timber Elements. Key Engineering Materials, 808, 172–176. doi: https://doi.org/10.4028/www.scientific.net/kem.808.172
  30. Guzii, S. G., Krivenko, P. V., Bondarenko, O. P., Kopylova, T. (2019). Study on Physico-Mechanical Properties of the Modified Alkaline Aluminosilicate Adhesive-Bonded Timber Elements. Solid State Phenomena, 296, 112–117. doi: https://doi.org/10.4028/www.scientific.net/ssp.296.112
  31. Krivenko, P. V., Guzii, S. G., Bodnarova, L., Valek, J., Hela, R., Zach, J. (2016). Effect of thickness of the intumescent alkali aluminosilicate coating on temperature distribution in reinforced concrete. Journal of Building Engineering, 8, 14–19. doi: https://doi.org/10.1016/j.jobe.2016.09.003
  32. Ershov, Yu. A. (2013). Kolloidnaya himiya. Fizicheskaya himiya dispersnyh sistem. Moscow: GEOTAR-Media, 352.
  33. Glazacheva, E. N., Uspenskaya, M. V. (2015). Kolloidnaya himiya. Metodicheskie ukazaniya k vypolneniyu laboratornyh rabot. Sankt-Peterburg: Universitet ITMO, 62.
  34. Guzii, S. (2017). Investigation of the influence of organomineral additives on the colloid-chemical properties of geocement dispersion. Technology Audit and Production Reserves, 3 (1 (35)), 38–43. doi: https://doi.org/10.15587/2312-8372.2017.105678
  35. Figovskiy, O. L., Kudryavtsev, P. G. (2014). Liquid glass and aqueous solutions of silicates, as a promising basis for technological processes of new nanocomposite materials. Inzhenerniy vestnik Dona. Available at: https://cyberleninka.ru/article/n/zhidkoe-steklo-i-vodnye-rastvory-silikatov-kak-perspektivnaya-osnova-tehnologicheskih-protsessov-polucheniya-novyh
  36. Panahov, G. M., Abbasov, E. M., Yuzbashiyeva, A. O., Rasulova, S. R., Guseynov, V. G. (2016). Rheological properties of structured disperse systems. Oil and Gas Business, 15 (2), 133–140.
  37. Malkin, A. Ya., Isaev, A. I. (2007). Reologiya: kontseptsii, metody, prilozheniya. Sankt-Peterburg: Professiya, 560.

Downloads

Published

2019-12-03

How to Cite

Guzii, S., Kryvenko, P., Guzii, O., & Yushkevich, S. (2019). Determining the effect of the composition of an aluminosilicate binder on the rheotechnological properties of adhesives for wood. Eastern-European Journal of Enterprise Technologies, 6(6 (102), 30–38. https://doi.org/10.15587/1729-4061.2019.185728

Issue

Section

Technology organic and inorganic substances