Model and method for determining conditional formula hydrocarbon fuel combustion

Authors

  • Максим Витальевич Максимов Odessa National Polytechnic University Shevchenko Ave 1, Odessa, Ukraine, 65044, Ukraine
  • Александр Иванович Брунеткин Odessa National Polytechnic University Shevchenko Ave 1, Odessa, Ukraine, 65044, Ukraine
  • Андрей Владимирович Бондаренко Odessa National Polytechnic University Shevchenko Ave 1, Odessa, Ukraine, 65044, Ukraine https://orcid.org/0000-0002-1432-8432

DOI:

https://doi.org/10.15587/1729-4061.2013.18702

Keywords:

hydrocarbon fuel, determination of conditional formula, products of combustion, mathematical model

Abstract

The method and the model are proposed, based on the equations of chemical equilibrium, partial pressures of the gases included in the products of combustion,Dalton's law, relationship of volume flow rates of fuel and oxidizer and the stoichiometric balance of the valences of oxidation-reduction cells for gaseous fuel. The numerical solution of nonlinear model was found using theNewton's method by expansion of the system equations in aTaylorseries on degrees not higher than the first. The developed method allows determing the quantitative composition of fuel and its conditional formula, fuel enthalpy, composition of the products of combustion. The method is based on using the measured consumption rates of fuel components and corresponding temperature in the combustion chamber as the input data. The method and model allow obtaining accurate calculation results with the known elemental composition of fuel [C], [H], [O].

The accuracy of the mathematical model allows using the results obtained on its basis to assess the parametric sensitivity.

Author Biographies

Максим Витальевич Максимов, Odessa National Polytechnic University Shevchenko Ave 1, Odessa, Ukraine, 65044

Doctor of Technical Sciences, Professor, Head of Department

Department of automation of processes of heat power

Александр Иванович Брунеткин, Odessa National Polytechnic University Shevchenko Ave 1, Odessa, Ukraine, 65044

Ph.D., associate professor, assistant of professor

Department of automation of processes of heat power

Андрей Владимирович Бондаренко, Odessa National Polytechnic University Shevchenko Ave 1, Odessa, Ukraine, 65044

Engineer, graduate student

Department of automation of processes of heat power

References

  1. Jiabin Zhou, Size distribution of polycyclic aromatic hydrocarbons in urban and suburban sites of Beijing, China [Текст] / Jiabin Zhou, Tieguan Wang, Yunbi Huang, Ting Mao, Ningning Zhong// Chemosphere. – 2005. -v. 61 - p. 792–799
  2. Changjie Cai, Characteristics and source apportionment of VOCs measured in Shanghai, China [Текст] / Changjie Cai, Fuhai Geng, Xuexi Tie, Qiong Yu, Junlin An// Atmospheric Environment. – 2010. -v. 44 - p. 5005-5014
  3. Kento T. Magara- Gomez, Sensitivity of hazardous air pollutant emissions to the combustion of blends of petroleum diesel and biodiesel fuel [Текст] / Kento T. Magara- Gomez, Michael R. Olson, Tomoaki Okuda, Kenneth A. Walz, James J. Schauer// Atmospheric Environment. – 2012. -v. 50 - p. 307-313
  4. R. Barbella, The emission of heavy hydrocarbons from a diesel engine and a spray flame [Текст] / R. Barbella, A. Ciajolo, A. D’Anna// Fuel. -1989. -Vol 68, June, - p.690-696
  5. Fokion N. Egolfopoulos, Non-premixed hydrocarbon ignition at high strain rates [Текст] / Fokion N. Egolfopoulos, Paul E. Dimotakis // Twenty-Seventh Symposium (International) on Combustion/The Combustion Institute. – 1998. -p. 641–648
  6. J. J. Sangiovanni, Soot formation characteristics of well-defined spray flames [Текст] / J. J. Sangiovanni, D. S. Liscinsky // Twentieth Symposium (International) on Combustion/The Combustion Institute. -1984. -p. 1063-1073
  7. M. Alfe, The effect of temperature on soot properties in premixed methane flames [Текст] / M. Alfe, B. Apicella, J.-N. Rouzaud, A. Tregrossi, A. Ciajolo // Combustion and Flame. -2010. -v. 157 -p.1959–1965
  8. M. Bui-pham, The asymptotic structure of premixed methane-air flames with slow CO oxidation [Текст] / M. Bui-pham, K. Seshadri, F. A. Williams // Combustion and Flame. -1992. -v. 89, -p.343-362
  9. Shigeyuki Tanaka, A reduced chemical kinetic model for HCCI combustion of primary reference fuels in a rapid compression machine [Текст] / Shigeyuki Tanaka, Ferran Ayala, James C. Keck// Combustion and Flame. -2003 -v.133 -p.467–481
  10. Термодинамические и теплофизические свойства продуктов сгорания: справочник/АН СССР, ВИНИТИ; науч. рук. В. П. Глушко, Т1: Методы расчета/ В. Е. Алемасов [и др.]; отв. ред. В. П. Глушко.-М.:ВИНИТИ, 1971.-266 с.: ил.
  11. Huf V. N., Gordon S., Morrel V. E., NASA Rept. 1037, 1951.
  12. Термодинамические и теплофизические свойства продуктов сгорания: справочник/АН СССР, ВИНИТИ; науч. рук. В. П. Глушко, Том II: Топлива на основе кислорода/ В. Е. Алемасов [и др.]; отв. ред. В. П. Глушко.-М.:ВИНИТИ, 1972.-390 с.: ил.
  13. Термодинамические свойства индивидуальных веществ. Справочное издание: В 4-х т./Л. В. Гурвич, И. В. Вейц, В. А. Медведев и др. - 3-е изд., перераб. и расширен. - Т. I. Кн. 2. - М.: Наука, 1978. - 328 с.
  14. Jiabin Zhou, Tieguan Wang, Yunbi Huang, Ting Mao, Ningning Zhong (2005). Size distribution of polycyclic aromatic hydrocarbons in urban and suburban sites of Beijing, China. Chemosphere, (61), 792–799.
  15. Changjie Cai, Fuhai Geng, Xuexi Tie, Qiong Yu, Junlin An (2010). Characteristics and source apportionment of VOCs measured in Shanghai, China. Atmospheric Environment, (44), 5005-5014.
  16. Kento T. Magara- Gomez, Michael R. Olson, Tomoaki Okuda, Kenneth A. Walz, James J. Schauer (2012). Sensitivity of hazardous air pollutant emissions to the combustion of blends of petroleum diesel and biodiesel fuel. Atmospheric Environment, (50), 307-313.
  17. Barbella, R., Ciajolo, A., D’Anna, A. (1989). The emission of heavy hydrocarbons from a diesel engine and a spray flame. Fuel, 68 (6), 690-696.
  18. Fokion N. Egolfopoulos, Paul E. Dimotakis. (1998). Non-premixed hydrocarbon ignition at high strain rates. Twenty-Seventh Symposium (International) on Combustion/The Combustion Institute, 641–648.
  19. Sangiovanni, J. J., Liscinsky, D. S. (1984). Soot formation characteristics of well-defined spray flames. Twentieth Symposium (International) on Combustion/The Combustion Institute, 1063-1073.
  20. Alfe, M., Apicella, B., Rouzaud, J.-N., Tregrossi, A., Ciajolo, A. (2010). The effect of temperature on soot properties in premixed methane flames. Combustion and Flame, (157), 1959–1965.
  21. Bui-pham, M., Seshadri, K., Williams, F. A. (1992). The asymptotic structure of premixed methane-air flames with slow CO oxidation. Combustion and Flame, (89), 343-362.
  22. Tanaka, Ferran Ayala, James C. Keck (2003). A reduced chemical kinetic model for HCCI combustion of primary reference fuels in a rapid compression machine. Combustion and Flame, (133) 467–481.
  23. Alemasov, V.E. (1971). Thermodynamic and transport properties of combustion: a handbook. AN USSR, VINITI, scientific hands. V.P. Glushko, T 1, 266.
  24. Huf, V. N., Gordon, S., Morrel, V. E. (1951). NASA Rept, 1037.
  25. Thermodynamic and transport properties of combustion: a handbook. AN USSR, VINITI, supervisor V.P. Glushko, Volume II: Fuels-based oxygen, VINITI, 1972.-390.
  26. Gurvich, L. V., Weitz, I., Medvedev, V.A. (1978). Thermodynamic properties of individual substances. Reference book: In 4 t, 328.

Published

2013-12-13

How to Cite

Максимов, М. В., Брунеткин, А. И., & Бондаренко, А. В. (2013). Model and method for determining conditional formula hydrocarbon fuel combustion. Eastern-European Journal of Enterprise Technologies, 6(8(66), 20–27. https://doi.org/10.15587/1729-4061.2013.18702

Issue

Section

Energy-saving technologies and equipment