Analysis of survivability of the system of organisation of trains flow on the theory of percolation

Authors

DOI:

https://doi.org/10.15587/1729-4061.2013.18707

Keywords:

plan forming freight trains, capacity, survivability, percolation theory

Abstract

This article deals with the study of the properties of vitality plan forming freight trains on the railways of Ukraine . The main objective of the study is to improve the theoretical approaches to the analysis of survival of freight on the railways. To solve this problem, research methods were used percolation theory, theory of graphs and mathematical programming, which made it possible to develop a procedure for the analysis of survival in a destructive impact on solving the problem of percolation sites. As part of the task percolation on a graph assignment plan forming trains was investigated critical state of transportation system. Dependences of the average inverse path between the network nodes and the diameter of the graph structure from destruction steps in a random failures and planned stations in the networks. Were taken we prove the stability of the network assignment plan forming trains to random failures, while graph network is extremely vulnerable to coordinated attacks. To select the most stable structures on the destinations trains in articles calculated k-core of the largest components of the graph has reached a critical point in the course of random and correlated percolation. In practical terms, these results allow us to establish the most important stations on the network performance which strongly influences the capacity of the railway network as a whole.

Author Biography

Андрій Володимирович Прохорченко, Ukrainian State Academy of Railway Transport Square Feuerbach, 7, Kharkov, 61166

Ph.D., assistant professor

Management of operational work

References

  1. Надійність техніки. Терміни та визначення: ДСТУ 2860-94. – [Чинний від 01.01.1996]. – К.: Держстандарт України, 1994. – 33 с. – (Національний стандарт України).
  2. Додонов, А.Г., Ландэ, Д.В. Живучесть информационных систем [текст]. – К.: Наук. думка, 2011. – 256 с.
  3. Тарасевич Ю.Ю. Перколяция: теория, приложения, алгоритмы: Учебное пособие [текст]. М.: Едиториал УРСС, 2002. – 112 с.
  4. Cuquet, M. Limited-path-length entanglement percolation in quantum complex networks [Текст]/ Martı Cuquet, John Calsamiglia // Journals PHYSICAL REVIEW, 2011. – V. 83. – 14 p.
  5. Broadbent S.K., Hammersley J.M. Percolation processes I. Crystals and mazes. [Текст]// Proc. Camb. Phil. Soc. – 1957. – 53. – P. 629-641.
  6. Wasserman, S., Faust, K., Social Network Analysis: Methods and Applications [Текст] // Cambridge University Press, Cambridge, 1994.
  7. Альфред В. Ахо, Джон Э. Хопкрофт, Джеффред Д. Ульман, Структуры данных и алгоритмы [текст]. – изд. дом «Вильямс», Москва. – 2000. – 384 с.
  8. Newman M.E.J. The Physics of Networks [Текст]/ M.E.J. Newman // Physical Today. November, 2008. – P.33-38.
  9. Batagelj, V., Mrvar, A., Pajek: Package for Large Networks, Version 1.10 (October 25, 2005). University of Ljubljana, Ljubljana.
  10. W. de Nooy, Mrvar A., Batagelj V., Exploratory Social Network Analysis with Pajek (Structural Analysis in the Social Sciences) [Текст], Cambridge University Press, Cambridge, 2005.
  11. Réka, A. Statistical mechanics of complex networks [Текст]/ A. Réka, A.-L. Barabasi// Reviews of Modern Physics, Jan. 2002. – 74. – P. 47-97.
  12. Barabási, A.L., Albert, R. Emergence of scaling in random networks [Текст]/ Science, 1999. – P. 509–512.
  13. Reliability engineering. Terms and definitions: ISO 2860-94. (1994), State Standard of Ukraine, 33.
  14. Dodonov, A., Landе, D. (2011) Survivability information systems, Science view, 256.
  15. Tarasevych, Y.Y. (2002) Percolation: Theory, Applications, algorithms, Moscow: URSS Edytoryal, 112.
  16. Cuquet, M., Calsamiglia, J. (2011). Limited-path-length entanglement percolation in quantum complex networks. Journals PHYSICAL REVIEW, 83, 14.
  17. Broadbent, S.K., Hammersley, J.M. (1957). Percolation processes I. Crystals and mazes. Proc. Camb. Phil. Soc, 53, 629-641.
  18. Wasserman, S., Faust, K., (1994) Social Network Analysis: Methods and Applications. Cambridge University Press, Cambridge.
  19. Alfred, V. Aho, John, E. Hopcroft, Dzheffred, D. Ullman, (2000) Data structure and algorithms, Ed. dom "Williams", Moscow, 384.
  20. Newman, M.E.J. (2008). The Physics of Networks. Physical Today. November, 33-38.
  21. Batagelj, V., Mrvar, A., (2005). Pajek: Package for Large Networks, Version 1.10. University of Ljubljana, Ljubljana.
  22. W. de Nooy, Mrvar A., Batagelj V. (2005). Exploratory Social Network Analysis with Pajek (Structural Analysis in the Social Sciences). Cambridge University Press. Cambridge.
  23. Réka, A., Barabasi, A.-L. (2002). Statistical mechanics of complex networks. Reviews of Modern Physics, 74, 47-97.
  24. Barabási, A.L., Albert, R. (1999). Emergence of scaling in random networks. Science, 509–512.

Published

2013-12-18

How to Cite

Прохорченко, А. В. (2013). Analysis of survivability of the system of organisation of trains flow on the theory of percolation. Eastern-European Journal of Enterprise Technologies, 6(3(66), 7–10. https://doi.org/10.15587/1729-4061.2013.18707

Issue

Section

Control processes