Development of an algorithm to train artificial neural networks for intelligent decision support systems
DOI:
https://doi.org/10.15587/1729-4061.2020.192711Keywords:
artificial neural networks, synaptic weights, membership function, information processing, intelligent decision support systemsAbstract
The algorithm to train artificial neural networks for intelligent decision support systems has been constructed. A distinctive feature of the proposed algorithm is that it conducts training not only for synaptic weights of an artificial neural network, but also for the type and parameters of membership function. In case of inability to ensure the assigned quality of functioning of artificial neural networks due to training of parameters of artificial neural network, the architecture of artificial neural networks is trained. The choice of the architecture, type and parameters of membership function occurs taking into consideration the computation resources of the facility and taking into consideration the type and the amount of information entering the input of an artificial neural network. In addition, when using the proposed algorithm, there is no accumulation of an error of artificial neural networks training as a result of processing the information entering the input of artificial neural networks.
Development of the proposed algorithm was predetermined by the need to train artificial neural networks for intelligent decision support systems in order to process more information given the unambiguity of decisions being made. The research results revealed that the specified training algorithm provides on average 16–23 % higher the efficiency of training artificial neural networks training that is on average by 16–23 % higher and does not accumulate errors in the course of training. The specified algorithm will make it possible to conduct training of artificial neural networks; to determine effective measures to enhance the efficiency of functioning of artificial neural networks. The developed algorithm will also enable the improvement of the efficiency of functioning of artificial neural networks due to training the parameters and the architecture of artificial neural networks. The proposed algorithm reduces the use of computational resources of decision support systems. The application of the developed algorithm makes it possible to work out the measures aimed at improving the effectiveness of training artificial neural networks and to increase the efficiency of information processingReferences
- Kalantaievska, S., Pievtsov, H., Kuvshynov, O., Shyshatskyi, A., Yarosh, S., Gatsenko, S. et. al. (2018). Method of integral estimation of channel state in the multiantenna radio communication systems. Eastern-European Journal of Enterprise Technologies, 5(9 (95)), 60–76. doi: https://doi.org/10.15587/1729-4061.2018.144085
- Kuchuk, N., Mohammed, A. S., Shyshatskyi, A., Nalapko, O. (2019). The method of improving the efficiency of routes selection in networks of connection with the possibility of self-organization. International Journal of Advanced Trends in Computer Science and Engineering, 8 (1.2), 1–6. Available at: http://www.warse.org/IJATCSE/static/pdf/file/ijatcse01812sl2019.pdf
- Zhang, J., Ding, W. (2017). Prediction of Air Pollutants Concentration Based on an Extreme Learning Machine: The Case of Hong Kong. International Journal of Environmental Research and Public Health, 14 (2), 114. doi: https://doi.org/10.3390/ijerph14020114
- Katranzhy, L., Podskrebko, O., Krasko, V. (2018). Modelling the dynamics of the adequacy of bank’s regulatory capital. Baltic Journal of Economic Studies, 4 (1), 188–194. doi: https://doi.org/10.30525/2256-0742/2018-4-1-188-194
- Manea, E., Di Carlo, D., Depellegrin, D., Agardy, T., Gissi, E. (2019). Multidimensional assessment of supporting ecosystem services for marine spatial planning of the Adriatic Sea. Ecological Indicators, 101, 821–837. doi: https://doi.org/10.1016/j.ecolind.2018.12.017
- Çavdar, A. B., Ferhatosmanoğlu, N. (2018). Airline customer lifetime value estimation using data analytics supported by social network information. Journal of Air Transport Management, 67, 19–33. doi: https://doi.org/10.1016/j.jairtraman.2017.10.007
- Kachayeva, G. I., Mustafayev, A. G. (2018). The use of neural networks for the automatic analysis of electrocardiograms in diagnosis of cardiovascular diseases. Herald of Dagestan State Technical University. Technical Sciences, 45 (2), 114–124. doi: https://doi.org/10.21822/2073-6185-2018-45-2-114-124
- Zhdanov, V. V. (2016). Experimental method to predict avalanches based on neural networks. Ice and Snow, 56 (4), 502–510. doi: https://doi.org/10.15356/2076-6734-2016-4-502-510
- Kanev, A., Nasteka, A., Bessonova, C., Nevmerzhitsky, D., Silaev, A., Efremov, A., Nikiforova, K. (2017). Anomaly detection in wireless sensor network of the “smart home” system. 2017 20th Conference of Open Innovations Association (FRUCT). doi: https://doi.org/10.23919/fruct.2017.8071301
- Sreeshakthy, M., Preethi, J. (2016). Classification of human emotion from deap EEG signal using hybrid improved neural networks with Сuckoo search. Brain: Broad Research in Artificial Intelligence and Neuroscience, 6 (3-4), 60–73.
- Chica, J., Zaputt, S., Encalada, J., Salamea, C., Montalvo, M. (2019). Objective assessment of skin repigmentation using a multilayer perceptron. Journal of Medical Signals & Sensors, 9 (2), 88. doi: https://doi.org/10.4103/jmss.jmss_52_18
- Massel, L. V., Gerget, O. M., Massel, A. G., Mamedov, T. G. (2019). The Use of Machine Learning in Situational Management in Relation to the Tasks of the Power Industry. EPJ Web of Conferences, 217, 01010. doi: https://doi.org/10.1051/epjconf/201921701010
- Abaci, K., Yamacli, V. (2019). Hybrid Artificial Neural Network by Using Differential Search Algorithm for Solving Power Flow Problem. Advances in Electrical and Computer Engineering, 19 (4), 57–64. doi: https://doi.org/10.4316/aece.2019.04007
- Mishchuk, O. S., Vitynskyi, P. B. (2018). Neural Network with Combined Approximation of the Surface of the Response. Research Bulletin of the National Technical University of Ukraine “Kyiv Politechnic Institute”, 2, 18–24. doi: https://doi.org/10.20535/1810-0546.2018.2.129022
- Kazemi, M., Faezirad, M. (2018). Efficiency Estimation using Nonlinear Influences of Time Lags in DEA Using Artificial Neural Networks. Industrial Management Journal, 10 (1), 17–34. doi: http://doi.org/10.22059/imj.2018.129192.1006898
- Parapuram, G., Mokhtari, M., Ben Hmida, J. (2018). An Artificially Intelligent Technique to Generate Synthetic Geomechanical Well Logs for the Bakken Formation. Energies, 11 (3), 680. doi: https://doi.org/10.3390/en11030680
- Prokoptsev, N. G., Alekseenko, A. E., Kholodov, Y. A. (2018). Traffic flow speed prediction on transportation graph with convolutional neural networks. Computer Research and Modeling, 10 (3), 359–367. doi: https://doi.org/10.20537/2076-7633-2018-10-3-359-367
- Bodyanskiy, Y., Pliss, I., Vynokurova, O. (2013). Flexible Neo-fuzzy Neuron and Neuro-fuzzy Network for Monitoring Time Series Properties. Information Technology and Management Science, 16 (1). doi: https://doi.org/10.2478/itms-2013-0007
- Bodyanskiy, Ye., Pliss, I., Vynokurova, O. (2013). Flexible wavelet-neuro-fuzzy neuron in dynamic data mining tasks. Oil and Gas Power Engineering, 2 (20), 158–162.
- Haykin, S. (1999). Neural Networks: A Comprehensive Foundation. Prentice Hall, 842.
- Nelles, O. (2001). Nonlinear System Identification. Springer. doi: https://doi.org/10.1007/978-3-662-04323-3
- Wang, L.-X., Mendel, J. M. (1992). Fuzzy basis functions, universal approximation, and orthogonal least-squares learning. IEEE Transactions on Neural Networks, 3 (5), 807–814. doi: https://doi.org/10.1109/72.159070
- Kohonen, T. (1995). Self-Organizing Maps. Springer. doi: https://doi.org/10.1007/978-3-642-97610-0
- Kasabov, N. (2003). Evolving Connectionist Systems. Springer. doi: https://doi.org/10.1007/978-1-4471-3740-5
- Sugeno, M., Kang, G. T. (1988). Structure identification of fuzzy model. Fuzzy Sets and Systems, 28 (1), 15–33. doi: https://doi.org/10.1016/0165-0114(88)90113-3
- Ljung, L. (1987). System Identification: Theory for the User. Prentice Hall, 432.
- Otto, P., Bodyanskiy, Y., Kolodyazhniy, V. (2003). A new learning algorithm for a forecasting neuro-fuzzy network. Integrated Computer-Aided Engineering, 10 (4), 399–409. doi: https://doi.org/10.3233/ica-2003-10409
- Narendra, K. S., Parthasarathy, K. (1990). Identification and control of dynamical systems using neural networks. IEEE Transactions on Neural Networks, 1 (1), 4–27. doi: https://doi.org/10.1109/72.80202
- I. Alieinykov, K. A. Thamer, Y. Zhuravskyi, O. Sova, N. Smirnova, R. Zhyvotovskyi et. al. (2019). Development of a method of fuzzy evaluation of information and analytical support of strategic management. Eastern-European Journal of Enterprise Technologies, 6 (2 (102), 16–27. doi: https://doi.org/10.15587/1729-4061.2019.184394
- Koshlan, A., Salnikova, O., Chekhovska, M., Zhyvotovskyi, R., Prokopenko, Y., Hurskyi, T. et. al. (2019). Development of an algorithm for complex processing of geospatial data in the special-purpose geoinformation system in conditions of diversity and uncertainty of data. Eastern-European Journal of Enterprise Technologies, 5 (9 (101)), 35–45. doi: https://doi.org/10.15587/1729-4061.2019.180197
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Oleg Sova, Oleksandr Turinskyi, Andrii Shyshatskyi, Volodymyr Dudnyk, Ruslan Zhyvotovskyi, Yevgen Prokopenko, Taras Hurskyi, Valerii Hordiichuk, Anton Nikitenko, Artem Remez
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.