An increase of the loading capacity and reliability of gears by methods of optimizing involute gearing parameters

Authors

DOI:

https://doi.org/10.15587/1729-4061.2020.195092

Keywords:

ball mill, tooth wear, involute gearing, tooth modification, tooth profile line

Abstract

A large volume of rocks containing valuable minerals is treated at mining and processing plants in Kazakhstan. Ball mills and rod mills are used for their grinding and further processing in Balkhash, Zhezkazgan.

Ball mills with gear drive rings in the drums suffer from intense wear of the teeth due to the heavy mode of the mill operation. It thus necessitates their frequent replacement and long mill downtime. The gears of the ball mill drive experience an intense impact stress, which reduces the resource of their operation and the mill as a whole due to wear.

The article presents research on developing rational parameters of involute gearing, aimed at increasing the loading capacity of the gear as well as reducing the overall dimensions, noise, and vibration. In order to solve the set tasks, dynamic processes are simulated, modification of the teeth is proposed, and the task of designing the initial meshing contour is solved when the line of the tooth profile is slightly deviated from the involute curve of the tooth surface.

The kinematic and dynamic parameters of a tooth transmission influencing the wear resistance of teeth are found out, and also the influence of the loading capacity under conditions of stable lubrication is determined.

Because of the complexity of modifying a large diameter of the driven gear wheel, it is proposed to modify only the teeth of the driving wheel, both at their tops and legs

Author Biographies

Irina Issayeva, Satbayev University Satpayeva str., 22, Almaty, Republic of Kazakhstan, 050013

Doctoral Student

Department of Industrial Engineering

Vitaly Povetkin, Al-Farabi Kazakh National University al-Farabi ave., 71, Almaty, Republic of Kazakhstan, 050040

Doctor of Technical Sciences, Professor

Department of Thermal Physics and Technical Physics

Azamat Alpeisov, Satbayev University Satpayeva str., 22, Almaty, Republic of Kazakhstan, 050013

PhD, Associate ProfessorDepartment of Industrial Engineering

Amina Bukayeva, Yessenov University 32 microdistricts, Aktau, Republic of Kazakhstan, 130003

Lecturer

Department of Mechanical Engineering and Transport

Dinara Arinova, М. Auezov South Kazakhstan State University Tauke Khan str., 5, Shymkent, Republic of Kazakhstan, 160012

Senior Lecturer

Department of Mechanics and Mechanical Engineering

References

  1. Bolotovskiy, I. A. (1997). Spravochnik po geometricheskomu raschetu evol'ventnyh zubchatyh i chervyachnyh peredach. Moscow: Mashinostroenie, 448.
  2. Vulgakov, E. B., Dorofeev, B. L. (2002). Komp'yuternoe proektirovanie evol'ventnyh zubchatyh peredach v obobshchayushchih parametrah. Konversiya v mashinostroenii, 6, 148–151.
  3. Kapelevich, A. L., Shekhtman, Y. V. (2009). Tooth Fillet Profile Optimization for Gears with Symmetric and Asymmetric Teeth. Gear Technology, 73–79.
  4. Kapelevich, A. L., Shekhtman, Y. V. (2016). Rating of asymmetric tooth gears. Power transmissing, 40–45.
  5. Zorko, D., Tavčar, J., Duhovnik, J. (2018). The influence of the tooth profile shape on the stress-strain state in the gear. International Scientific Journal «Machines. Technologies. Materials.», 12 (4), 153–156.
  6. Jelaska, D. (2012). Gears and Gear Drives. John Wiley & Sons. doi: https://doi.org/10.1002/9781118392393
  7. Križan, B. (1995). Numerical procedure for obtaining the gears' addendum modification coefficients based on the sliding friction loss minimum. In International Congress "Gear Transmissions".
  8. Klein, B. (1988). Ubertragungseigenschaften von Verzahnungsgeometrien. Technica, 37 (5), 15–24.
  9. Povetkin, V. V., Kerimzhanova, M. F., Isaeva, I. N., Orlova, E. P. (2016). Kachestvo izgotovleniya tyazhelonagruzhennyh zubchatyh peredach i ego vliyanie na iznosostoykost'. Promyshlennost' Kazahstana, 6 (99), 52–54.
  10. Tayts, B. A., Markov, N. N. (1978). Tochnost' i kontrol' zubchatyh peredach. Leningrad: Mashinostroenie, 136.
  11. Timofeev, B. P., Abramchuk, M. V. (2010). Normy tochnosti zubchatyh koles i peredach: nuzhen noviy standart. Standarty i kachestvo, 5, 60–63.
  12. Dorofeev, V. L., Golovanov, V. V., Dorofeev, D. V. (2013). Sistema modelirovaniya "AEROFLANK" & pryamoy sintez iznosostoykih i maloshumnyh zubchatyh peredach. Visnyk NTU "KhPI". Serya: Problemy mekhanichnoho pryvodu, 40 (1013), 40–49.
  13. Tiwari, S. K., Joshi, U. K. (2012). Stress Analysis of mating involute spur gear teeth. International Journal of Engineering Research and Technology, 1 (9).
  14. Unksov, E. P., Dzhonson, U., Kolmogorov, V. L. et. al.; Unksov, E. P., Ovchinnikov, A. G. (Ed.) (1983). Teoriya plasticheskih deformatsiy metallov. Moscow: Mashinostroenie, 598.
  15. Shi, J., Gou, X., Zhu, L. (2019). Modeling and analysis of a spur gear pair considering multi-state mesh with time-varying parameters and backlash. Mechanism and Machine Theory, 134, 582–603. doi: https://doi.org/10.1016/j.mechmachtheory.2019.01.018
  16. Huang, K., Xiong, Y., Wang, T., Chen, Q. (2017). Research on the dynamic response of high-contact-ratio spur gears influenced by surface roughness under EHL condition. Applied Surface Science, 392, 8–18. doi: https://doi.org/10.1016/j.apsusc.2016.09.009
  17. Karpat, F., Yuce, C., Doğan, O. (2020). Experimental measurement and numerical validation of single tooth stiffness for involute spur gears. Measurement, 150, 107043. doi: https://doi.org/10.1016/j.measurement.2019.107043
  18. Thirumurugan, R., Gnanasekar, N. (2019). Investigation of the effect of load distribution along the face width and load sharing between the pairs in contact on the fracture parameters of the spur gear tooth with root crack. Engineering Failure Analysis, 97, 518–533. doi: https://doi.org/10.1016/j.engfailanal.2019.01.051
  19. Artoni, A. (2019). A methodology for simulation-based, multiobjective gear design optimization. Mechanism and Machine Theory, 133, 95–111. doi: https://doi.org/10.1016/j.mechmachtheory.2018.11.013
  20. Sánchez, M. B., Pleguezuelos, M., Pedrero, J. I. (2019). Influence of profile modifications on meshing stiffness, load sharing, and trasnsmission error of involute spur gears. Mechanism and Machine Theory, 139, 506–525. doi: https://doi.org/10.1016/j.mechmachtheory.2019.05.014
  21. Luo, Y., Baddour, N., Liang, M. (2019). Dynamical modeling and experimental validation for tooth pitting and spalling in spur gears. Mechanical Systems and Signal Processing, 119, 155–181. doi: https://doi.org/10.1016/j.ymssp.2018.09.027
  22. Dorofeev, V., Dorofeev, D., Zhuravlev, V., Edinovich, A. (2015). The use of the software complex AEROFLANK for calculating the load distribution across the width of the teeth, the deflection of the shafts and of the forces acting on the supports. Progressivnye tehnologii i sistemy mashinostroeniya, 1 (51), 56–62.
  23. Timofeev, B. P., Abramchuk, M. V. (2007). Sravnenie tablichnyh znacheniy parametrov tochnosti zubchatyh koles i peredach v standartah: ISO 1328 i GOST 1643-81. Zubchatye peredachi. Available at: http://tmm.spbstu.ru/9/timofeev-9.pdf

Downloads

Published

2020-02-29

How to Cite

Issayeva, I., Povetkin, V., Alpeisov, A., Bukayeva, A., & Arinova, D. (2020). An increase of the loading capacity and reliability of gears by methods of optimizing involute gearing parameters. Eastern-European Journal of Enterprise Technologies, 1(7 (103), 6–15. https://doi.org/10.15587/1729-4061.2020.195092

Issue

Section

Applied mechanics