Improving the efficiency of water fire extinguishing systems operation by using guanidine polymers
DOI:
https://doi.org/10.15587/1729-4061.2020.196881Keywords:
polyhexamethylene guanidine hydrochloride, water extinguishing agent, firefighting, hydrodynamic activity, Toms effectAbstract
This study has established the possibility of obtaining water extinguishing agents, which can reduce hydraulic resistance (with the Toms effect) by using guanidine derivatives.
A cationic polyhexamethylene guanidine hydrochloride surfactant with a molecular weight of 10,000–11,000 u was used for experimental study.
It has been shown that the addition of insignificant concentrations (0.03–0.290 %) of polyhexamethylene guanidine hydrochloride, which belongs to class IV of toxicity and is an effective inhibitor of biocorrosion, increases a flow rate of water fire extinguishing agent by 1.20–1.78 times when using the RSK-50 fire barrel.
We have established experimentally an increase in the flow rate of a polymer solution from drencher nozzles by 1.86–7.69 % in the concentration range (0.3–1.4 %) along the examined pipeline (1 m and 13 m). An increase in pressure by 2–6 % has been observed compared with the initial values under such conditions.
The used polymer has properties of a "biologically soft" surfactant and meets high environmental requirements of the environmental protection and rational use of natural resources. One can use it to develop formulations for environmentally acceptable water extinguishing agents and their application in firefighting practice.
The above allows us to argue that the directed use of salts of polyhexamethylene guanidine hydrochloride is possible to reduce hydraulic losses in water extinguishing systems. One can apply them to improve engineering and technical measures for preventing and responding to emergenciesReferences
Symonenko, A. P. (2012). Improving the efficiency of firefighting equipment by applying the hydrodynamic activity of water – soluble polymer compositions. Sb. nauchn. trudov Natsional'nogo universiteta grazhdanskoy zashchity Ukrainy «Problemy pozharnoy bezopasnosti», 32, 195–206.
Stupin, A. B., Simonenko, A. P., Aslanov, P. V., Bykovskaya, N. V. (2001). Gidrodinamicheski-aktivnye kompozitsii v pozharotushenii. Donetsk: DonGU, 149.
Simonenko, A. P., Sobko, A. Yu., Bykovskaya, N. V., Prohorenko, S. F. (2012). Primenenie gidrodinamicheski aktivnyh kompozitsiy dlya uvelicheniya propusknoy sposobnosti kanalizatsionnyh kollektorov i sistem vodootvedeniya v chrezvychaynyh situatsiyah. Visti Avtomobilno-dorozhnoho instytutu, 2 (15), 189–194.
Yasnyuk, T. I., Vyazkova, E. A., Anisimova, E. Y. et. al. (2018). The use of water-soluble polymers to reduce the hydraulic friction resistance. The Eurasian Scientific Journal, 10 (3).
Xi, L. (2019). Turbulent drag reduction by polymer additives: Fundamentals and recent advances. Physics of Fluids, 31 (12), 121302. doi: https://doi.org/10.1063/1.5129619
Voulgaropoulos, V., Zadrazil, I., Le Brun, N., Bismarck, A., Markides, C. N. (2019). On the link between experimentally‐measured turbulence quantities and polymer‐induced drag reduction in pipe flows. AIChE Journal, 65 (9). doi: https://doi.org/10.1002/aic.16662
Zhu, L., Bai, X., Krushelnycky, E., Xi, L. (2019). Transient dynamics of turbulence growth and bursting: Effects of drag-reducing polymers. Journal of Non-Newtonian Fluid Mechanics, 266, 127–142. doi: https://doi.org/10.1016/j.jnnfm.2019.03.002
Zhu, L., Schrobsdorff, H., Schneider, T. M., Xi, L. (2018). Distinct transition in flow statistics and vortex dynamics between low- and high-extent turbulent drag reduction in polymer fluids. Journal of Non-Newtonian Fluid Mechanics, 262, 115–130. doi: https://doi.org/10.1016/j.jnnfm.2018.03.017
Pereira, A. S., Thompson, R. L., Mompean, G. (2019). Common features between the Newtonian laminar–turbulent transition and the viscoelastic drag-reducing turbulence. Journal of Fluid Mechanics, 877, 405–428. doi: https://doi.org/10.1017/jfm.2019.567
Benzi, R., Ching, E. S. C. (2018). Polymers in Fluid Flows. Annual Review of Condensed Matter Physics, 9 (1), 163–181. doi: https://doi.org/10.1146/annurev-conmatphys-033117-053913
Valiev, M. I., Zholobov, V. V., Tarnovskiy, E. I. (2013). K voprosu o mehanizme deystviya vysokomolekulyarnyh polimernyh protivoturbulentnyh prisadok. Nauka i tehnologii truboprovodnogo transporta nefti i nefteproduktov, 3 (11), 18–26.
Orlov, O. P. (2016). Fizicheskaya priroda yavleniya umen'sheniya soprotivleniya treniya v slabyh vodnyh rastvorah polimerov. Trudy Krylovskogo gosudarstvennogo nauchnogo tsentra, 92 (376), 59–92.
Hydroquick System. AEG & Union Carbide (German & USA).
Kostiuk, D., Kolesnikov, D., Stas, S., Yakhno, O. (2018). Research into cavitation processes in the trapped volume of the gear pump. Eastern-European Journal of Enterprise Technologies, 4 (7 (94)), 61–66. doi: https://doi.org/10.15587/1729-4061.2018.139583
Nadtoka, O. M., Nyzhnyk, Yu. V., Fedorova, L. M., Marievskyi, V. F., Baranova, H. I., Nyzhnyk, T. Yu. (2006). Pat. No. 79720 UA. A method for obtaining polyguanidines. No. a200610366; declareted: 29.09.2006; published: 10.07.2007, Bul. No. 10.
Mahlovana, T. V., Nyzhnyk, T. Yu., Zhartovskyi, S. V. (2017). Ekolohichni aspekty vykorystannia huanidynovykh polimeriv v umovakh nadzvychainykh sytuatsiy. Cherkasy: vydavets FOP Hordienko Ye.I., 210.
Vointsev, I. I., Nizhnik, T. Yu., Strikalenko, T. V., Baranova, A. I. (2018). Anticorrosive properties of disinfectant reagents based on polyhexamethylene guanidine hydrochloride. Voda: himiya i ekologiya, 10-12, 99–108.
Voropaev, G. A., Dimitrieva, N. F., Zagumenniy, Ya. V. (2013). Structure of a turbulent boundary layer at combined use of deformable surface and small concentrated polymer additives. Prykladna hidromekhanika, 15 (2), 3–12.
Tsukahara, T., Motozawa, M., Tsurumi, D., Kawaguchi, Y. (2013). PIV and DNS analyses of viscoelastic turbulent flows behind a rectangular orifice. International Journal of Heat and Fluid Flow, 41, 66–79. doi: https://doi.org/10.1016/j.ijheatfluidflow.2013.03.011
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Tatyana Maglyovana, Taras Nyzhnyk, Serhiy Stas, Denis Kolesnikov, Tatyana Strikalenko

This work is licensed under a Creative Commons Attribution 4.0 International License.
Our journal abides by the CREATIVE COMMONS copyright rights and permissions for open access journals.
Authors, who are published in this journal, agree to the following conditions:
1. The authors reserve the right to authorship of the work and pass the first publication right of this work to the journal under the terms of a Creative Commons Attribution License, which allows others to freely distribute the published research with the obligatory reference to the authors of the original work and the first publication of the work in this journal.
2. The authors have the right to conclude separate supplement agreements that relate to non-exclusive work distribution in the form in which it has been published by the journal (for example, to upload the work to the online storage of the journal or publish it as part of a monograph), provided that the reference to the first publication of the work in this journal is included.