Establishing patterns in the temperature distribution within a deformation zone during thin strip rolling

Authors

DOI:

https://doi.org/10.15587/1729-4061.2020.198296

Keywords:

slab, roll, hot rolling, accelerated cooling, thermal state, non-stationary thermal conductivity, energy balance

Abstract

To improve the strip rolling technology, it is important to know components of the thermal state of both the strip being rolled and the tool used, that is, rolls at each point of different layers of the strip and rolls, in any section of the deformation zone. It was established that for the numerical solution of thermal problems of heat transfer in the strip-roll system described by equations of unsteady heat conduction, the finite difference method is the most effective. For the further numerical solution of the problems of unsteady thermal conductivity of the strip and rolls during hot rolling, the sections of slabs and rolls were divided by a conditional mesh. Energy balance equations with subsequent finite-difference Fourier approximation for possible options of the mesh nodes occurring in solving the two-dimensional problem of unsteady heat conduction.

When solving the heat balance problems for both the strip and the rolls, the performed transformations make it possible to switch from solving the nonlinear heat conduction problem to solving the linearized problem. It was also shown that when calculating the thermal state of the active zone in which cyclic temperature changes occur during one revolution, it becomes possible to switch from solving a problem in a cylindrical coordinate system to solving it in a rectangular coordinate system. Transition to solving a one-dimensional strip-roll system greatly simplifies the calculation. The solution of the III boundary-value problem for the roll and comparison of the obtained results with the results of solutions for the strip-roll system enables the theoretical determination of the heat transfer coefficient in the deformation zone.

The study results can be used to determine temperature and speed mode of cooling a thin strip during its rolling as well as set tasks for designing special equipment for accelerated cooling in a production stream of strip rolling mills

Author Biographies

Oleg Trishevskij, Kharkiv Petro Vasylenko National Technical University of Agriculture Alchevskyh str., 44, Kharkiv, Ukraine, 61002

Doctor of Technical Sciences, Professor, Head of Department

Department of Technology of Materials

Oleksii Kaliuzhnyi, Kharkiv Petro Vasylenko National Technical University of Agriculture Alchevskyh str., 44, Kharkiv, Ukraine, 61002

PhD, Associate Professor

Department of Technology of Materials

Oleksandr Yurchenko, National Technical University "Kharkiv Polytechnic Institute" Kyrpychova str., 2, Kharkiv, Ukraine, 61002

PhD, Associate Professor

Department of Metal Forming

Anatoliy Avtukhov, Kharkiv Petro Vasylenko National Technical University of Agriculture Alchevskyh str., 44, Kharkiv, Ukraine, 61002

Doctor of Technical Sciences, Associate Professor

Department of Technological Systems of Repair Production

Vladymyr Levchenko, Donbass State Engineering Academy Academicheskaya str., 72, Kramatorsk, Ukraine, 84313

PhD, Associate Professor

Department of Metal Forming

Aleksandr Akhlestin, Rollform Limited Liability Company (Rollform, LLC) Plitochnaya str., 12, Kharkov, Ukraine, 61106

Director

References

  1. Jiang, L. Y., Yuan, G., Li, Z. L., Wu, D., Wang, G. D. (2014). Research on Ultra-Fast Cooling Heat Transfer Coefficient Affecting Law for Hot Strip Mill. Materials Science Forum, 788, 346–350. doi: https://doi.org/10.4028/www.scientific.net/msf.788.346
  2. Lipunov, Y. I., Eismondt, K. Y., Nekrasova, E. V., Zakharchenko, M. V., Yaroshenko, Y. G., Abramov, E. V. (2015). Water-jet cooling in the thermal strengthening of asymmetric profiles. Steel in Translation, 45 (3), 226–230. doi: https://doi.org/10.3103/s0967091215030122
  3. Mohapatra, S. S., Chakraborty, S., Pal, S. K. (2012). Experimental Studies on Different Cooling Processes to Achieve Ultra-Fast Cooling Rate for Hot Steel Plate. Experimental Heat Transfer, 25 (2), 111–126. doi: https://doi.org/10.1080/08916152.2011.582567
  4. Mohapatra, S. S., Ravikumar, S. V., Jha, J. M., Singh, A. K., Bhattacharya, C., Pal, S. K., Chakraborty, S. (2013). Ultra fast cooling of hot steel plate by air atomized spray with salt solution. Heat and Mass Transfer, 50 (5), 587–601. doi: https://doi.org/10.1007/s00231-013-1260-6
  5. Telin, N. V., Sinitsyn, N. N. (2016). Roller temperature in metallurgical machines with scale formation. Steel in Translation, 46 (7), 463–466. doi: https://doi.org/10.3103/s0967091216070147
  6. Ostapenko, A. L., Beygelzimer, E. E., Kozlenko, D. A., Gritsenko, S. A., Goncharov, N. V. (2016). Sheet cooling in a roller quenching machine. Steel in Translation, 46 (5), 349–355. doi: https://doi.org/10.3103/s0967091216050119
  7. Sokolov, S. F., Ogol'tsov, A. A., Sokolov, D. F., Vasil'ev, A. A. (2017). Matematicheskaya model' dlya rascheta temperatury polosy pri goryachey prokatke na stane 2000 PAO «Severstal'». Stal', 2, 35–41.
  8. Trishevskii, O. I., Saltavets, N. V. (2009). Mathematical model of the thermal state of strip in rolling. Steel in Translation, 39 (2), 158–160. doi: https://doi.org/10.3103/s0967091209020168
  9. Trishevskii, O. I., Saltavets, N. V. (2015). Thermal state of strip in ultrafast cooling. Steel in Translation, 45 (6), 443–446. doi: https://doi.org/10.3103/s0967091215060133
  10. Muhin, U., Belskij, S., Makarov, E., Koynov, T. (2016). Simulation of accelerated strip cooling on the hot rolling mill run-out roller table. Frattura Ed Integrità Strutturale, 10 (37), 305–311. doi: https://doi.org/10.3221/igf-esis.37.40
  11. Sosedkova, M. A., Radionova, L. V., Lisovskaya, T. A. (2017). Mathematical Model of Hot Rolling Temperature Parameters. Solid State Phenomena, 265, 1026–1033. doi: https://doi.org/10.4028/www.scientific.net/ssp.265.1026
  12. Colas, R. (1995). Modelling heat transfer during hot rolling of steel strip. Modelling and Simulation in Materials Science and Engineering, 3 (4), 437–453. doi: https://doi.org/10.1088/0965-0393/3/4/002
  13. Lienhard IV, J. H., Lienhard V, J. H. (2017). A Heat Transfer Textbook. Phlogiston Press, Cambridge Massachusetts, 768.
  14. Pitts, D. R., Sissom, L. E. (1998). Theory and Problems of Heat Transfer. McGraw-Hill, 365.
  15. Rudd, K. (2013). Solving Partial Differential Equations Using Artificial Neural Networks. Dissertation, Duke University, 130.
  16. Tselikov, A. I., Grishkov, A. I. (1979). Teoriya prokatki. Moscow: Metallurgiya, 358.
  17. Konovalov, Yu. V., Ostapenko, A. L. (1974). Temperaturniy rezhim shirokopolosnyh stanov goryachey prokatki. Moscow: Metallurgiya, 176.
  18. Gelei, Sh. (1958). Raschety usiliy i energii pri plasticheskoy deformatsii metalla. Moscow: Metallurgiya, 420.
  19. Trinks, V. (1934). Kalibrovka prokatnyh valkov. Moscow: ONTI, 144.
  20. Ventsel', H. (1965). Prokatka i prokatnoe oborudovanie. VNIITI. Ekspress-informatsiya, 27, 8–43.
  21. Tryshevskyi, O. I., Saltavets, M. V. (2018). Podil sliabiv sitkoiu pry rishenni dvomirnoi zadachi nestatsionarnoi teploprovidnosti yavnym kintsevo –vidiemnym metodom. Innovatsiyni tekhnolohiyi ta obladnannia obrobky materialiv u mashynobuduvanni ta metalurhiyi. Visnyk NTU «KhPI», 48 (1167), 45–49.
  22. Trishevskiy, O. I., Saltavets, N. V. (2017). Ispol'zovanie metoda yavnyh konechnyh raznostey dlya resheniya zadach teploobmena pri goryachey prokatke. Stal', 3, 33–36.
  23. Abbaspour, M., Saboonchi, A. (2008). Work roll thermal expansion control in hot strip mill. Applied Mathematical Modelling, 32 (12), 2652–2669. doi: https://doi.org/10.1016/j.apm.2007.09.011
  24. Serajzadeh, S. (2006). Effects of rolling parameters on work-roll temperature distribution in the hot rolling of steels. The International Journal of Advanced Manufacturing Technology, 35 (9-10), 859–866. doi: https://doi.org/10.1007/s00170-006-0764-3
  25. Ginzburg, V. B. (2009). Flat-Rolled Steel Processes: Advanced Technologies. CRC Press, 384.
  26. Tanenbaum, A. S., Maarten, V. S. (2007). Distributed Systems: Principles and Paradigms. Prentice Hall of India.

Downloads

Published

2020-04-30

How to Cite

Trishevskij, O., Kaliuzhnyi, O., Yurchenko, O., Avtukhov, A., Levchenko, V., & Akhlestin, A. (2020). Establishing patterns in the temperature distribution within a deformation zone during thin strip rolling. Eastern-European Journal of Enterprise Technologies, 2(5 (104), 21–28. https://doi.org/10.15587/1729-4061.2020.198296

Issue

Section

Applied physics