Construction of a matrix discrete model of a three-dimensional body for the reconstruction of its shape

Authors

DOI:

https://doi.org/10.15587/1729-4061.2020.201694

Keywords:

voxel model, matrix model, three-dimensional objects, shape reconstruction, resampling, redundancy elimination

Abstract

A matrix model of the representation of spatial objects for the synthesis, reconstruction, and analysis of their shape is proposed. The model is built on the basis of discrete data about the object, such as, for example, raster images or readings of spatial scanners. Unlike similar voxel models, matrix models describe not the volume but the surfaces of objects and, while preserving the advantages of voxel models, such as simplicity and regularity of structure, eliminate their inherent redundancy. It is shown in the work that, while retaining information on the form sufficient for visualizing the object, the matrix model can occupy 1.5–3 times less memory (the comparison was carried out for models in the VOX format of the MagicaVoxel package). The conditions are established under which the matrix model remains more economical than the voxel model, and it is shown that these conditions are satisfied for practically significant cases.

An algorithm for constructing a discrete matrix model based on a voxel is described.

A general approach to solving the problem of the resampling of models of three-dimensional graphics objects is proposed, which does not depend on the dimension of the source data array. In the framework of this approach, the matrix model is resampled. The necessary transformations of the model matrices are described, including both resampling and requantization, which ensures their controlled accuracy of the representation of spatial objects.

Procedures for monitoring and restoring integrity have also been developed for the proposed matrix model. The obtained conditions for monitoring the integrity of the model in practically significant cases (when the number of model elements is more than 153) can reduce the number of elements viewed, compared with the voxel model.

The limitations of matrix models are established associated with the possible loss of information about a part of the surface hidden from an external observer

Author Biographies

Oleksandr Reuta, Dnipro University of Technology D. Yavornytskoho ave., 19, Dnipro, Ukraine, 49005

PhD, Associate Professor

Department of Software of Computer Systems

Hadi Hab Raman, Oles Honchar Dnipro National University Gagarinа ave., 72, Dnipro, Ukraine, 49010

Postgraduate Student

Department of Electronic Telecommunications

Dmitry Mozgovoy, Oles Honchar Dnipro National University Gagarinа ave., 72, Dnipro, Ukraine, 49010

PhD, Associate Professor

Department of Electronic Telecommunications

References

  1. Li, Dzh., Uer, B. (2002). Trehmernaya grafika i animatsiya. Moscow: «Vil'yams», 640.
  2. Reuta, O. V. (2008). Vyznachennia tini vokselia zahalnoho polozhennia u zadachakh modeliuvannia tryvymirnykh obiektiv. Pratsi Tavriiskoho derzhavnoho ahrotekhnichnoho universytetu. Prykladna heometriia ta inzhenerna hrafika, 41 (4), 44–49.
  3. Musa, S., Ziatdiniv, R., Griffiths, C. (2013). Introduction to computer animation and its possible educational applications. New Challenges in Education. Retrospection of history of education to the future in the interdisciplinary dialogue among didactics of various school subjects. Ružomberok, Slovakia: VERBUM – vydavateľstvo Katolíckej univerzity v Ružomberku, 177–205.
  4. Reuta, O. V. (2009). Matrychna dyskretna model tryvymirnoho tila dlia zadachi analizu yoho tineutvorennia. Heometrychne ta kompiuterne modeliuvannia, 25, 68–72.
  5. Darmon, I. Voxel computational morphogenesis in urban context: proposition and analysis of rules-based generative algorithms considering solar access. Available at: https://www.researchgate.net/publication/329738763_Voxel_computational_morphogenesis_in_urban_context_proposition_and_analysis_of_rules-based_generative_algorithms_considering_solar_access
  6. Li, M., Sun, C. (2018). Refinement of LiDAR point clouds using a super voxel based approach. ISPRS Journal of Photogrammetry and Remote Sensing, 143, 213–221. doi: https://doi.org/10.1016/j.isprsjprs.2018.03.010
  7. Al-Oraiqat, A. M., Bashkov, E. A., Zori, S. A., Amro, A. M. (2017). Generalized 3D Voxel Image Synthesis Architecture for Volumetric Spatial Visualization. IPASJ International Journal of Information Technology (IIJIT), 5 (1). Available at: https://www.researchgate.net/publication/313397537_Generalized_3D_Voxel_Image_Synthesis_Architecture_for_Volumetric_Spatial_Visualization
  8. Aremu, A. O., Brennan-Craddock, J. P. J., Panesar, A., Ashcroft, I. A., Hague, R. J. M., Wildman, R. D., Tuck, C. (2017). A voxel-based method of constructing and skinning conformal and functionally graded lattice structures suitable for additive manufacturing. Additive Manufacturing, 13, 1–13. doi: https://doi.org/10.1016/j.addma.2016.10.006
  9. Vitiska, N. I., Gulyaev, N. A. (2015). An approach to visualization of three-dimensional scenes and objects via voxel graphics for simulation systems. Izvestiya Yuzhnogo federal'nogo universiteta. Tehnicheskie nauki. Available at: https://cyberleninka.ru/article/n/metod-vizualizatsii-tryohmernyh-stsen-i-obektov-vokselnoy-grafiki-dlya-sistem-imitatsionnogo-modelirovaniya
  10. Castellazzi, G., D’Altri, A., Bitelli, G., Selvaggi, I., Lambertini, A. (2015). From Laser Scanning to Finite Element Analysis of Complex Buildings by Using a Semi-Automatic Procedure. Sensors, 15 (8), 18360–18380. doi: https://doi.org/10.3390/s150818360
  11. Wang, Y., Cheng, L., Chen, Y., Wu, Y., Li, M. (2016). Building Point Detection from Vehicle-Borne LiDAR Data Based on Voxel Group and Horizontal Hollow Analysis. Remote Sensing, 8 (5), 419. doi: https://doi.org/10.3390/rs8050419
  12. Wang, L., Xu, Y., Li, Y., Zhao, Y. (2018). Voxel segmentation-based 3D building detection algorithm for airborne LIDAR data. PLOS ONE, 13 (12), e0208996. doi: https://doi.org/10.1371/journal.pone.0208996
  13. Jing, W., Shimada, K. (2017). Model-based view planning for building inspection and surveillance using voxel dilation, Medial Objects, and Random-Key Genetic Algorithm. Journal of Computational Design and Engineering, 5 (3), 337–347. doi: https://doi.org/10.1016/j.jcde.2017.11.013
  14. Poux, F., Billen, R. (2019). Voxel-based 3D Point Cloud Semantic Segmentation: Unsupervised Geometric and Relationship Featuring vs Deep Learning Methods. ISPRS International Journal of Geo-Information, 8 (5), 213. doi: https://doi.org/10.3390/ijgi8050213
  15. Xu, Y., Tuttas, S., Hoegner, L., Stilla, U. (2018). Voxel-based segmentation of 3D point clouds from construction sites using a probabilistic connectivity model. Pattern Recognition Letters, 102, 67–74. doi: https://doi.org/10.1016/j.patrec.2017.12.016
  16. Reuta, O. V. (2010). Redyskretyzatsiya modeli tryvymirnoho tila dlia zadachi analizu yoho tineutvorennia. Pratsi Tavriyskoho derzhavnoho ahrotekhnichnoho universytetu. Prykladna heometriya ta inzhenerna hrafika, 41 (4), 44–49.
  17. Reuta, O. V. (2008). Vokselna model tryvymirnoho obiektu v zadachakh rekonstruktsiyi yoho formy. Prykladna heometriia ta inzhenerna hrafika, 80, 500–504.
  18. Pyysalo, U., Sarjakoski, T. (2008). Voxel approach to landscape modeling. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVII, 563–568.
  19. Hawick, K. A. (2010). 3D Visualisation of Simulation Model Voxel Hyperbricks and the Cubes Program. Available at: http://cssg.massey.ac.nz/cstn/082/cstn-082.pdf
  20. Liu, Z., Tang, H., Lin, Y., Han, S. (2019). Point-Voxel CNN for Efficient 3D Deep Learning. 33rd Conference on Neural Information Processing Systems (NeurIPS 2019). Vancouver.
  21. Poux, F., Billen, R. (2019). Voxel-based 3D Point Cloud Semantic Segmentation: Unsupervised Geometric and Relationship Featuring vs Deep Learning Methods. ISPRS International Journal of Geo-Information, 8 (5), 213. doi: https://doi.org/10.3390/ijgi8050213
  22. Milian, F. M., Garcia, F., Guevara, M. V. M., Da Silva Correia I. K., Meira, N. G. (2009). Development of voxel models from 3D surfaces. Optimized methodology. XIV Congresso Brasileiro de Física Médica.
  23. Shin, D., Fowlkes, C. C., Hoiem, D. (2018). Pixels, Voxels, and Views: A Study of Shape Representations for Single View 3D Object Shape Prediction. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. doi: https://doi.org/10.1109/cvpr.2018.00323
  24. Knyaz, V. A., Kniaz, V. V., Remondino, F. (2019). Image-to-Voxel Model Translation with Conditional Adversarial Networks. Computer Vision – ECCV 2018 Workshops, 601–618. doi: https://doi.org/10.1007/978-3-030-11009-3_37
  25. MagicaVoxel @ ephtracy (Win/Mac). Available at: https://ephtracy.github.io/
  26. MagicaVoxel-file-format-vox.txt. Available at: https://github.com/ephtracy/voxel-model/blob/master/MagicaVoxel-file-format-vox.txt

Downloads

Published

2020-04-30

How to Cite

Reuta, O., Hab Raman, H., & Mozgovoy, D. (2020). Construction of a matrix discrete model of a three-dimensional body for the reconstruction of its shape. Eastern-European Journal of Enterprise Technologies, 2(2 (104), 6–16. https://doi.org/10.15587/1729-4061.2020.201694