Predicting the shape formation of hollow parts with a flange in the process of combined radial-reverse extrusion

Authors

DOI:

https://doi.org/10.15587/1729-4061.2020.203988

Keywords:

energy method, combined extrusion, parts with a flange, shape formation, deformation process

Abstract

The simulation of the process of combined radial reverse extrusion of hollow parts with a flange has established two fundamentally different, in terms of the components of the kinematic modules, calculation schemes CDZ-1.i and CDZ-2.j, taking into consideration the possible shape of the boundary of the section of a metal flow inside a workpiece. The comparison of the dependences of the optimal relative rate of metal outflow in the opposite direction for different schemes indicates significant differences in the resulting values in the course of the deformation process. The relevance of this study is due to making it easier to evaluate the use of the combined extrusion process to produce hollow parts with a flange while maintaining the required dimensions compared to simple deformation schemes. We have identified the lack of detailed studies into the technologies for the introduction of combined extrusion schemes, as well as the absence of technological recommendations for determining the force regime and the shape formation of a semi-finished article.

The process of the combined extrusion of hollow parts with a flange was investigated, thereby selecting different types based on the nature of the metal flow depending on the geometric ratios of the deformation process. We have obtained experimental data on the gradual shape formation of a semi-finished product in the process of deformation at different geometric ratios. The limits of using estimation schemes of the process have been defined to obtain data on the increments in a semi-finished product, including in terms of predicting the formation of a shrinkage cavity in the bottom part. It is recommended that a condition of selecting the appropriate scheme should be the condition for a minimum value of the reduced pressure of deformation  ̅pi< ̅pj. The resulting recommendations make it easier to predict the shape formation and the force mode of extrusion (a deviation from experimentally obtained data can be reduced to 10 %), which would contribute to evaluating the rationality of the combined extrusion processes while ensuring the required dimensions of a part

Author Biographies

Natalia Hrudkina, Donbass State Engineering Academy Akademichna str., 72, Kramatorsk, Ukraine, 84313

PhD

Department of Metal Forming

Leila Aliieva, Donbass State Engineering Academy Akademichna str., 72, Kramatorsk, Ukraine, 84313

Doctor of Technical Sciences, Associate Professor

Department of Metal Forming

Oleg Markov, Donbass State Engineering Academy Akademichna str., 72, Kramatorsk, Ukraine, 84313

Doctor of Technical Sciences, Professor, Head of Department

Department of Computerized Design and Modeling of Processes and Machines

Irina Marchenko, Pryazovskyi State Technical University Universytets’ka str., 7, Mariupol, Ukraine, 87555

PhD, Associate Professor

Department of Informatics

Alexander Shapoval, Kremenchuk Mykhailo Ostrohradskyi National University Pershotravneva str., 20, Kremenchuk, Ukraine, 39600

PhD, Associate Professor

Department of Manufacturing Engineering

Payman Abhari, Donbass State Engineering Academy Akademichna str., 72, Kramatorsk, Ukraine, 84313

Doctor of Technical Sciences, Professor

Department of Metal Forming

Mariia Kordenko, Research and Production Enterprise «INTRIS» Yaroslava Mudroho str., 48А, Kramatorsk, Ukraine, 84300

Research Engineer

References

  1. Zagirnyak, M., Zagirnyak, V., Moloshtan, D., Drahobetskyi, V., Shapoval, A. (2019). A search for technologies implementing a high fighting efficiency of the multilayered elements of military equipment. Eastern-European Journal of Enterprise Technologies, 6 (1 (102)), 33–40. doi: https://doi.org/10.15587/1729-4061.2019.183269
  2. Markov, O., Gerasimenko, O., Aliieva, L., Shapoval, A. (2019). Development of the metal rheology model of high-temperature deformation for modeling by finite element method. EUREKA: Physics and Engineering, 2, 52–60. doi: https://doi.org/10.21303/2461-4262.2019.00877
  3. Kukhar, V., Kurpe, O., Klimov, E., Balalayeva, E., Dragobetskii, V. (2018). Improvement of the Method for Calculating the Metal Temperature Loss on a Coilbox Unit at The Rolling on Hot Strip Mills. International Journal of Engineering & Technology, 7 (4.3), 35. doi: https://doi.org/10.14419/ijet.v7i4.3.19548
  4. Dragobetskii, V., Zagirnyak, V., Shlyk, S., Shapoval, A., Naumova, O. (2019). Application of explosion treatment methods for production Items of powder materials. Przegląd Elektrotechniczny, 1 (5), 41–44. doi: https://doi.org/10.15199/48.2019.05.10
  5. Anishchenko, O. S., Kukhar, V. V., Grushko, A. V., Vishtak, I. V., Prysiazhnyi, A. H., Balalayeva, E. Y. (2019). Analysis of the Sheet Shell's Curvature with Lame's Superellipse Method during Superplastic Forming. Materials Science Forum, 945, 531–537. doi: https://doi.org/10.4028/www.scientific.net/msf.945.531
  6. Zhang, S. H., Wang, Z. R., Wang, Z. T., Xu, Y., Chen, K. B. (2004). Some new features in the development of metal forming technology. Journal of Materials Processing Technology, 151 (1-3), 39–47. doi: https://doi.org/10.1016/j.jmatprotec.2004.04.098
  7. Aliev, I. S. (1988). Radial extrusion processes. Soviet Forging and Sheet Metal Stamping Technology, 6, 1–4.
  8. Plancak, M., Barisic, B., Grizelj, B. (2008). Different Possibilities of Process Analysis in Cold Extrusion. Key Engineering Materials, 367, 209–214. doi: https://doi.org/10.4028/www.scientific.net/kem.367.209
  9. Perig, A. (2015). Two-parameter Rigid Block Approach to Upper Bound Analysis of Equal Channel Angular Extrusion Through a Segal 2θ-die. Materials Research, 18 (3), 628–638. doi: https://doi.org/10.1590/1516-1439.004215
  10. Laptev, A. M., Perig, A. V., Vyal, O. Y. (2013). Analysis of equal channel angular extrusion by upper bound method and rigid blocks model. Materials Research, 17 (2), 359–366. doi: https://doi.org/10.1590/s1516-14392013005000187
  11. Hrudkina, N., Aliieva, L. (2020). Modeling of cold extrusion processes using kinematic trapezoidal modules. FME Transactions, 48 (2), 357–363. doi: https://doi.org/10.5937/fme2002357h
  12. Luri, R., Luis Pérez, C. J. (2011). Modeling of the processing force for performing ECAP of circular cross-section materials by the UBM. The International Journal of Advanced Manufacturing Technology, 58 (9-12), 969–983. doi: https://doi.org/10.1007/s00170-011-3460-x
  13. Ogorodnikov, V. A., Dereven'ko, I. A. (2013). Modeling combined extrusion process to assess the limit of forming blanks from different materials. Izvestiya MGTU «MAMI», 2 (1 (15)), 224–229.
  14. Dereven'ko, I. A. (2012). Deformiruemost' i kachestvo zagotovok v usloviyah kombinirovannogo formoizmeneniya. Obrabotka metallov davleniem, 3 (32).
  15. Alieva, L. I., Martynov, S. V., Grudkina, N. S., Komirenko, A. D. (2013). Tehnologicheskaya deformiruemost' pri shtampovke stakanov s flantsem. Nauchnyy Vestnik DGMA, 1 (11), 20–24. Available at: http://www.dgma.donetsk.ua/science_public/science_vesnik/%E2%84%961(11%D0%95)_2013/article/5.pdf
  16. Hrudkina, N., Aliieva, L., Abhari, P., Markov, O., Sukhovirska, L. (2019). Investigating the process of shrinkage depression formation at the combined radial-backward extrusion of parts with a flange. Eastern-European Journal of Enterprise Technologies, 5 (1 (101)), 49–57. doi: https://doi.org/10.15587/1729-4061.2019.179232
  17. Ogorodnikov, V. А., Dereven’ko, I. А., Sivak, R. I. (2018). On the Influence of Curvature of the Trajectories of Deformation of a Volume of the Material by Pressing on Its Plasticity Under the Conditions of Complex Loading. Materials Science, 54 (3), 326–332. doi: https://doi.org/10.1007/s11003-018-0188-x
  18. Sivak, R. (2017). Evaluation of metal plasticity and research on the mechanics of pressure treatment processes under complex loading. Eastern-European Journal of Enterprise Technologies, 6 (7 (90)), 34–41. doi: https://doi.org/10.15587/1729-4061.2017.115040
  19. Farhoumand, A., Ebrahimi, R. (2016). Experimental investigation and numerical simulation of plastic flow behavior during forward-backward-radial extrusion process. Progress in Natural Science: Materials International, 26 (6), 650–656. doi: https://doi.org/10.1016/j.pnsc.2016.12.005
  20. Farhoumand, A., Ebrahimi, R. (2009). Analysis of forward–backward-radial extrusion process. Materials & Design, 30 (6), 2152–2157. doi: https://doi.org/10.1016/j.matdes.2008.08.025
  21. Seo, J. M., Jang, D. H., Min, K. H., Koo, H. S., Kim, S. H., Hwang, B. B. (2007). Forming Load Characteristics of Forward and Backward Tube Extrusion Process in Combined Operation. Key Engineering Materials, 340-341, 649–654. doi: https://doi.org/10.4028/www.scientific.net/kem.340-341.649
  22. Ebrahimi, R., Reihanian, M., Moshksar, M. M. (2008). An analytical approach for radial-forward extrusion process. Materials & Design, 29 (9), 1694–1700. doi: https://doi.org/10.1016/j.matdes.2008.03.018
  23. Stepanskiy, L. G. (1979). Raschety protsessov obrabotki metallov davleniem. Moscow: Mashinostroenie, 215.
  24. Shestakov, N. A. (1998). Energeticheskie metody rascheta protsessov obrabotki metallov davleniem. Moscow: MGIU, 125.
  25. Chudakov, P. D. (1992). Verhnyaya otsenka moshchnosti plasticheskoy deformatsii s ispol'zovaniem minimiziruyushchey funktsii. Izvestiya vuzov. Mashinostroenie, 9, 13–15.
  26. Aliieva, L., Hrudkina, N., Aliiev, I., Zhbankov, I., Markov, O. (2020). Effect of the tool geometry on the force mode of the combined radial-direct extrusion with compression. Eastern-European Journal of Enterprise Technologies, 2 (1 (104)), 15–22. doi: https://doi.org/10.15587/1729-4061.2020.198433
  27. Hrudkina, N., Aliieva, L., Abhari, P., Kuznetsov, M., Shevtsov, S. (2019). Derivation of engineering formulas in order to calculate energy-power parameters and a shape change in a semi-finished product in the process of combined extrusion. Eastern-European Journal of Enterprise Technologies, 2 (7 (98)), 49–57. doi: https://doi.org/10.15587/1729-4061.2019.160585

Downloads

Published

2020-08-31

How to Cite

Hrudkina, N., Aliieva, L., Markov, O., Marchenko, I., Shapoval, A., Abhari, P., & Kordenko, M. (2020). Predicting the shape formation of hollow parts with a flange in the process of combined radial-reverse extrusion. Eastern-European Journal of Enterprise Technologies, 4(1 (106), 55–62. https://doi.org/10.15587/1729-4061.2020.203988

Issue

Section

Engineering technological systems