Development of a method for determining the wear of artillery barrels by acoustic fields of shots

Authors

DOI:

https://doi.org/10.15587/1729-4061.2020.206114

Keywords:

artillery barrel wear, initial shell velocity, shock wave, muzzle wave

Abstract

A possibility of assessing the level of wear of artillery barrels by acoustic fields of shots was studied. Despite the importance of knowledge on the current barrel state, existing methods of wear assessment are not sufficiently prompt. These methods give rather rough estimates of wear or require expensive equipment. Unlike the known methods, the method proposed in the article is prompt, does not require large expenses, can be combined with a training firing, and is easily automated. Characteristics of the shock and muzzle waves generated by a gunshot were studied and differences in their parameters for barrels without wear and those with a critical wear level were shown. Initial shell velocity serves as a criterion indicator of wear. It was shown that according to the acoustic characteristics, a shot from the barrel having any degree of wear is equivalent to a shot from a gun of a smaller caliber. A computational experiment was conducted on real acoustic signals recorded during the firing of a 155 mm howitzer. Informative attributes of acoustic signals from shots were selected. They make it possible to automatically classify barrels into two classes: barrels suitable for use and barrels with wear exceeding the critical level. It was shown that the application of the support vector method (SVM) makes it possible to confidently classify barrels by the level of their wear based on the temporal and spectral attributes of the shock and muzzle waves. A cumulative analysis of spectral characteristics was used in the analysis of acoustic signals from shots. This has a significantly increased likelihood of correct barrel classification. The results are useful for practical use in artillery units in the field conditions. The study results enable the development of an automated system for assessing the barrel condition with high promptness. This ensures sufficient accuracy in assessing the level of barrel wear in the combat practice

Author Biographies

Yevhenii Dobrynin, National University "Odessa Maritime Academy" Didrichsona str., 8, Odessa, Ukraine, 65029

Researcher

Maksym Maksymov, Odessa National Polytechnic University Shevchenka ave., 1, Odessa, Ukraine, 65044

Doctor of Technical Sciences, Professor, Head of Department

Department of Computer Automation Technologies

Viktor Boltenkov, Odessa National Polytechnic University Shevchenka ave., 1, Odessa, Ukraine, 65044

PhD, Associate Professor

Department of Information Systems

Institute of Computer Systems

References

  1. Zakamennyh, I., Kucherova, V. G., Chervontseva, S. E. (Eds.) (2017). Proektirovanie spetsmashin, Ch. 1, Kn. 1. Artilleriyskie stvoly. Volgograd, 396.
  2. Pushkarev, A. M. (2018). Elementy teorii iznosa artilleriyskih stvolov. V Vserossiyskaya nauchno-prakticheskaya konferentsiya «Kalashnikovskie chteniya». Izhevsk, 87–92.
  3. Li, X., Mu, L., Zang, Y., Qin, Q. (2020). Study on performance degradation and failure analysis of machine gun barrel. Defence Technology, 16 (2), 362–373. doi: https://doi.org/10.1016/j.dt.2019.05.008
  4. Banerjee, A., Nayak, N., Giri, D., Bandha, K. (2019). Effect of Gun Barrel Wear on Muzzle Velocity of a typical Artillery Shell. 2019 International Conference on Range Technology (ICORT). doi: https://doi.org/10.1109/icort46471.2019.9069641
  5. Maciąg, P., Chałko, L. (2019). Use of sound spectral signals analysis to assess the technical condition of mechanical devices. MATEC Web of Conferences, 290, 01006. doi: https://doi.org/10.1051/matecconf/201929001006
  6. Zhitnik, V. E., Petrenko, V. N., Trofimenko, P. E., Gridin, V. I. (2011). Calculation of conditions of the departure of the shell from the trunks canal by means of ballistic station. Systemy ozbroiennia i viyskova tekhnika, 2 (26), 49–52.
  7. Pinezich, J. D., Heller, J., Lu, T. (2010). Ballistic Projectile Tracking Using CW Doppler Radar. IEEE Transactions on Aerospace and Electronic Systems, 46 (3), 1302–1311. doi: https://doi.org/10.1109/taes.2010.5545190
  8. Ka, M.-H., Vazhenin, N. A., Baskakov, A. I., Oh, C.-G. (2005). Analysis of Power Performance of a Muzzle Velocity Radar. 2005 5th International Conference on Information Communications & Signal Processing. doi: https://doi.org/10.1109/icics.2005.1689038
  9. Zubkov, A. N., Kashin, S. V., Leshchenko, S. I., Lob, Ya. D., Martyugov, S. A., Naumets, N. A. et. al. (2009). Artilleriyskaya ballisticheskaya stantsiya novogo pokoleniya. Artilleriyskoe i strelkovoe vooruzhenie, 4, 15–18.
  10. Budaretskiy, Y. I. (2015). Ways to increase the firing from cannons with the significant depreciation of the barrel. Systems of Arms and Military Equipment, 2 (42), 7–9.
  11. Pushkaryov, A. M., Vershinin, A. А., Volf, I. G. (2015). Estimation of artillery barrel wear. Izvestiya Tul'skogo gosudarstvennogo universiteta. Tehnicheskie nauki, 12 (1), 242–248.
  12. Alchinov, V. I., Sidorov, L. I., Chistova, G. K. (2019). Nadezhnost' tehnicheskih sistem voennogo naznacheniya. Moscow: Infra-Inzheneriya, 324.
  13. Jain, J., Soni, S., Sharma, D. (2011). Determination of Wear Rate Equation and Estimation of Residual Life of 155mm Autofrettaged Gun Barrel. The International Journal of Multiphysics, 5 (1), 1–8. doi: https://doi.org/10.1260/1750-9548.5.1.1
  14. Tsybulyak, B. (2016). Parameters degradation barrel artillery equipment during exploitation. Viyskovo-tekhnichnyi zbirnyk, 14, 121–126.
  15. Jankovych, R., Beer, S. (2011). T-72 tank barrel bore wear. International journal of mechanics, 5 (4), 353–360. Available at: http://www.naun.org/main/NAUN/mechanics/17-292.pdf
  16. Goncharenko, P. D., Haykov, V. L. (2012). Sovremennye sredstva kontrolya iznosa kanala orudiynogo stvola. Zbirnyk naukovykh prats akademiyi viiskovo-morskykh syl im. P.S. Nakhimova, 1 (9), 22–30.
  17. Haykov, V. L. (2013). Development of instrumental control methods and visualization of a gun barrels condition. Eastern-European Journal of Enterprise Technologies, 3 (7 (63)), 52–56. Available at: http://journals.uran.ua/eejet/article/view/14825/12627
  18. Zheng, D., Tan, H., Zhou, F. (2017). A design of endoscopic imaging system for hyper long pipeline based on wheeled pipe robot. AIP Conference Proceedings, 1820, 060001. doi: https://doi.org/10.1063/1.4977316
  19. Sokolov, A. V., Nasedkin, V. I., Kryuchkov, P. A., Naumov, D. N., Savinyh, S. A., Nikitin, I. S., Devyatkin, V. A. (2014). Optiko-elektronnaya sistema kontrolya iznosa kanalov stvolov. Oboronnaya tehnika, 10, 20–25.
  20. Suh, K. (2018). A design on robot system for artillery barrel inspection. International Journal of Pure and Applied Mathematics, 118 (19), 1835–1844. Available at: https://acadpubl.eu/jsi/2018-118-19/articles/19b/21.pdf
  21. Slutsky, V. E., Zaycev, A. A. (2014). On procedures of handling the ballistic preparation of artillery systems by applying the equipment of the check & test vehicle. Trudy Nizhegorodskogo gosudarstvennogo tehnicheskogo universiteta im. R.E. Alekseeva, 5 (107), 160–165.
  22. Chang, H., Wu, Y.-C., Tsung, T.-T. (2011). Characteristics and measurement of supersonic projectile shock waves by a 32-microphone ring array. Review of Scientific Instruments, 82 (8), 084902. doi: https://doi.org/10.1063/1.3622044
  23. Guo, S., Ma, Q., Zhou, X., Shao, R. (2012). Acoustic Recognition of Artillery Projectiles by SVM. Lecture Notes in Electrical Engineering, 345–351. doi: https://doi.org/10.1007/978-3-642-25781-0_52
  24. Dagallier, A., Cheinet, S., Cosnefroy, M., Rickert, W., Weßling, T., Wey, P., Juvé, D. (2019). Long-range acoustic localization of artillery shots using distributed synchronous acoustic sensors. The Journal of the Acoustical Society of America, 146 (6), 4860–4872. doi: https://doi.org/10.1121/1.5138927
  25. Damarla, T. (2015). Battlefield Acoustics. Springer. doi: https://doi.org/10.1007/978-3-319-16036-8
  26. Akman, Ç. (2017). Multi shooter Localization with Acoustic Sensors. Available at: http://etd.lib.metu.edu.tr/upload/12621435/index.pdf
  27. Makinen, T., Pertila, P., Auranen, P. (2009). Supersonic bullet state estimation using particle filtering. 2009 IEEE International Conference on Signal and Image Processing Applications. doi: https://doi.org/10.1109/icsipa.2009.5478625
  28. Sergienko, A. B. (2011). Tsifrovaya obrabotka signalov. Sankt-Peterburg: BHV-Peterburg, 768.
  29. Zhao, X. Y., Zhou, K. D., He, L., Lu, Y., Wang, J., Zheng, Q. (2019). Numerical Simulation and Experiment on Impulse Noise in a Small Caliber Rifle with Muzzle Brake. Shock and Vibration, 2019, 1–12. doi: https://doi.org/10.1155/2019/5938034
  30. Maher, R. C., Shaw, S. R. (2008). Deciphering gunshot recordings. 33rd International Conference: Audio Forensics-Theory and Practice. Available at: http://www.aes.org/e-lib/browse.cfm?elib=14410
  31. Naz, P., Marty, C. (2006). Sound detection and localization of small arms, mortars, and artillery guns. Unattended Ground, Sea, and Air Sensor Technologies and Applications VIII. doi: https://doi.org/10.1117/12.672936
  32. Rabinovich, E. V., Filipenko, N. Y., Shefel, G. S. (2018). Generalized model of seismic pulse. Journal of Physics: Conference Series, 1015, 052025. doi: https://doi.org/10.1088/1742-6596/1015/5/052025
  33. ISO 9613-1:1993. Acoustics – Attenuation of sound during propagation outdoors – Part 1: Calculation of the absorption of sound by the atmosphere (1993). ISO, 26.
  34. Bykov, A. P., Medvetskiy, S. V. (2010). K voprosu o koeffitsientah, harakterizuyushchih vnutriballisticheskiy protsess klassicheskogo artilleriyskogo vystrela. Izvestiya Rossiyskoy akademii raketnyh i artilleriyskih nauk, 2 (64), 75–80.
  35. Huseby, M. (2007). Noise emission data for M109, 155 mm field howitzer. Norwegian Defence Research Establishment (FFI), 45. Available at: https://publications.ffi.no/nb/item/asset/dspace:3388/07-02530.pdf
  36. Field Artillery Sound Ranging and Flash Ranging (1979). United States. Department of the Army, Headquarters, 231. Available at: https://books.google.com.ua/books/about/Field_Artillery_Sound_Ranging_and_Flash.html?id=0IhyEWUhBCsC&redir_esc=y
  37. Loucks, R. B., Davis, B. S., Moss, L. G., Pham, T., Fong, M. (1995). A Method of Identifying Supersonic Projectiles Using Acoustic Signatures. USA ARL, 223. Available at: https://apps.dtic.mil/dtic/tr/fulltext/u2/a299215.pdf
  38. Belov, V. V., Burkatovskaya, Yu. B., Krasnenko, N. P., Rakov, A. S., Rakov, D. S., Shamanaeva, L. G. (2018). Experimental and theoretical investigations of near-ground acoustic radiation propagation in the atmosphere. Atmospheric and Oceanic Optics, 5, 372–377. doi: https://doi.org/10.15372/aoo20180506
  39. Hacıhabiboğlu, H. (2017). Procedural Synthesis of Gunshot Sounds Based on Physically Motivated Models. Game Dynamics, 47–69. doi: https://doi.org/10.1007/978-3-319-53088-8_4
  40. Wilson, D. K., White, M. J. (2010). Discrimination of Wind Noise and Sound Waves by Their Contrasting Spatial and Temporal Properties. Acta Acustica United with Acustica, 96 (6), 991–1002. doi: https://doi.org/10.3813/aaa.918362
  41. Becker, G., Güdesen, A. (2000). Passive sensing with acoustics on the battlefield. Applied Acoustics, 59 (2), 149–178. doi: https://doi.org/10.1016/s0003-682x(99)00023-7
  42. Dutoit, T., Marqués, F. (2009). Applied Signal Processing. A MATLAB™-Based Proof of Concept. Springer. doi: https://doi.org/10.1007/978-0-387-74535-0
  43. Kirsanov, E. A., Sirota, A. A. (2012). Obrabotka informatsii v prostranstvenno-raspredelennyh sistemah radiomonitoringa: statisticheskiy i neyrosetevoy podhody. Moscow: Fizmatlit, 344.
  44. Al-Jasri, G. Kh. M., Boltenkov, V. A., Chervonenko, P. P. (2016). Algoritms of cooperative heat trasfer leak detection in acoustic sensor nework. Elektrotekhnichni ta kompiuterni systemy, 21 (97), 92–97.
  45. Awad, M., Khanna, R. (2015). Support Vector Machines for Classification. Efficient Learning Machines, 39–66. doi: https://doi.org/10.1007/978-1-4302-5990-9_3
  46. Wang, L. (2005). Support Vector Machines: Theory and Applications. Springer. doi: https://doi.org/10.1007/b95439
  47. Temko, A., Nadeu, C. (2006). Classification of acoustic events using SVM-based clustering schemes. Pattern Recognition, 39 (4), 682–694. doi: https://doi.org/10.1016/j.patcog.2005.11.005
  48. Hägele, D., Schefczik, F. (2018). Higher-order moments, cumulants, and spectra of continuous quantum noise measurements. Physical Review B, 98 (20). doi: https://doi.org/10.1103/physrevb.98.205143
  49. Antoni, J., Randall, R. B. (2006). The spectral kurtosis: application to the vibratory surveillance and diagnostics of rotating machines. Mechanical Systems and Signal Processing, 20 (2), 308–331. doi: https://doi.org/10.1016/j.ymssp.2004.09.002
  50. Hixon, T. J., Weismer, G., Hoit, J. D. (2014). Preclinical speech science: Anatomy, physiology, acoustics, perception. Plural Publishing. Available at: https://psycnet.apa.org/record/2013-10861-000
  51. Demidova, L. A., Sokolova, Y. S. (2017). Two-stage data classification method based on SVM-algorithm and the k nearest neighbors algorithm. Vestnik of Ryazan State Radio Engineering University, 62, 119–132. doi: https://doi.org/10.21667/1995-4565-2017-62-4-119-132
  52. Algazinov, E. K., Dryuchenko, M. A., Minakov, D. A., Sirota, A. A., Shulgin, V. A. (2013). Methods pattern recognition elements of cereal mixes of results spectral characteristics in the separation system real time. Vestnik Voronezhskogo gosudarstvennogo universiteta. Seriya: Sistemniy analiz i informatsionnye tehnologii, 2, 9–19.

Downloads

Published

2020-06-30

How to Cite

Dobrynin, Y., Maksymov, M., & Boltenkov, V. (2020). Development of a method for determining the wear of artillery barrels by acoustic fields of shots. Eastern-European Journal of Enterprise Technologies, 3(5 (105), 6–18. https://doi.org/10.15587/1729-4061.2020.206114

Issue

Section

Applied physics