An investigation of granular material movement due to instability post impinging upward fluid

Authors

DOI:

https://doi.org/10.15587/1729-4061.2020.209933

Keywords:

granular material, instability, impinging, upward flow, Bond number, fluidization, cavity fluid

Abstract

Granular is a form of material that is widely used in the industry. To move the granular material, energy is needed to form a flow of granular. Granular instability can be utilized to move granular material. Prevention of jamming and clogging is done by breaking down the parts of the granular, which are locking. Impinging fluid in the granular is used to create granular instability. An observation was made using the experimental method. The granular in the Hele-Shaw cell is shot with fluid in the granular body and results in instability motion. Fluid impinging breaks granular bonds and forms fluid cavities. Furthermore, the fluid cavity moves upward due to unstable conditions. Granular with a strong bond is loose in the form of the agglomerate. Agglomerate is destroyed in the process of moving because there is a drag force. Granular with weak bonds tries to maintain individually form fingering. Granular moves down in the settling process to find a stable position. Instability is affected by the bonds between the grains. A comparison between the cohesion force and the mass weight of the particles is expressed as a granular Bond number Bog. In glass sand material, strong granular bonds occur at granular sizes below 100 µm. Granular bonds affect the movement of instability in groups. The value of the granular Bond number is greater than 1. At sizes of 100 to 230 µm, the granular bond still affects the granular instability with the fingering pattern in the granular motion. The value of the granular Bond number is close to 1. Granular sizes above 230 µm indicate the presence of non-dominant bonds between the grains. The individual granular mass is higher than the cohesion force that occurs at the interface between the granular, and the granular Bond number value is less than 1.

Supporting Agency

  • The author would like to thank the Doctoral Program of Mechanical Engineering at Brawijaya University for supporting this research.

Author Biographies

Eko Yudiyanto, State Polytechnic of Malang Jl. Soekarno-Hatta, 9, Malang, Indonesia, 65141 Brawijaya University Jl. Mayjend Haryono, 167, Malang, Indonesia, 65145

Lecturer

Department of Mechanical Engineering

Doctoral Student

Department of Mechanical Engineering

I Nyoman Gede Wardana, Brawijaya University Jl. Mayjend Haryono, 167, Malang, Indonesia, 65145

PhD, Professor

Department of Mechanical Engineering

Denny Widhiyanuriyawan, Brawijaya University Jl. Mayjend Haryono, 167, Malang, Indonesia, 65145

Doctor of Mechanical Engineering, Associate Professor

Department of Mechanical Engineering

Nurkholis Hamidi, Brawijaya University Jl. Mayjend Haryono, 167, Malang, Indonesia, 65145

Doctor of Mechanical Engineering, Associate Professor

Department of Mechanical Engineering

References

  1. Torres-Serra, J., Romero, E., Rodríguez-Ferran, A., Caba, J., Arderiu, X., Padullés, J.-M., González, J. (2017). Flowability of granular materials with industrial applications - An experimental approach. EPJ Web of Conferences, 140, 03068. doi: https://doi.org/10.1051/epjconf/201714003068
  2. Venkatesh, R., Bek, M., Voloshin, A., Emri, I. (2018). A New Methodology for Measuring the Flowability of Granular Materials. Materials Today: Proceedings, 5 (13), 26693–26696. doi: https://doi.org/10.1016/j.matpr.2018.08.137
  3. Mort, P. (2015). Characterizing flowability of granular materials by onset of jamming in orifice flows. Papers in Physics, 7. doi: https://doi.org/10.4279/pip.070004
  4. Hooshanginejad, A., Druecke, B. C., Lee, S. (2019). Stability analysis of a particle band on the fluid–fluid interface. Journal of Fluid Mechanics, 869. doi: https://doi.org/10.1017/jfm.2019.239
  5. McLaren, C. P., Kovar, T. M., Penn, A., Müller, C. R., Boyce, C. M. (2019). Gravitational instabilities in binary granular materials. Proceedings of the National Academy of Sciences, 116 (19), 9263–9268. doi: https://doi.org/10.1073/pnas.1820820116
  6. Philippe, P., Badiane, M. (2013). Localized fluidization in a granular medium. Physical Review E, 87 (4). doi: https://doi.org/10.1103/physreve.87.042206
  7. Verbücheln, F., Parteli, E. J. R., Pöschel, T. (2015). Helical inner-wall texture prevents jamming in granular pipe flows. Soft Matter, 11 (21), 4295–4305. doi: https://doi.org/10.1039/c5sm00760g
  8. Endo, K., Reddy, K. A., Katsuragi, H. (2017). Obstacle-shape effect in a two-dimensional granular silo flow field. Physical Review Fluids, 2 (9). doi: https://doi.org/10.1103/physrevfluids.2.094302
  9. Janda, A., Zuriguel, I., Garcimartín, A., Maza, D. (2015). Clogging of granular materials in narrow vertical pipes discharged at constant velocity. Granular Matter, 17 (5), 545–551. doi: https://doi.org/10.1007/s10035-015-0583-z
  10. Nicolas, A., Garcimartín, Á., Zuriguel, I. (2018). Trap Model for Clogging and Unclogging in Granular Hopper Flows. Physical Review Letters, 120 (19). doi: https://doi.org/10.1103/physrevlett.120.198002
  11. Hong, X., Kohne, M., Morrell, M., Wang, H., Weeks, E. R. (2017). Clogging of soft particles in two-dimensional hoppers. Physical Review E, 96 (6). doi: https://doi.org/10.1103/physreve.96.062605
  12. Gaudel, N., Kiesgen De Richter, S. (2019). Effect of vibrations on granular material flows down an inclined plane using DEM simulations. Powder Technology, 346, 256–264. doi: https://doi.org/10.1016/j.powtec.2019.01.080
  13. Lozano, C., Lumay, G., Zuriguel, I., Hidalgo, R. C., Garcimartín, A. (2012). Breaking Arches with Vibrations: The Role of Defects. Physical Review Letters, 109 (6). doi: https://doi.org/10.1103/physrevlett.109.068001
  14. Mankoc, C., Garcimartín, A., Zuriguel, I., Maza, D., Pugnaloni, L. A. (2009). Role of vibrations in the jamming and unjamming of grains discharging from a silo. Physical Review E, 80 (1). doi: https://doi.org/10.1103/physreve.80.011309
  15. Zuriguel, I., Janda, Á., Arévalo, R., Maza, D., Garcimartín, Á. (2017). Clogging and unclogging of many-particle systems passing through a bottleneck. EPJ Web of Conferences, 140, 01002. doi: https://doi.org/10.1051/epjconf/201714001002
  16. Valdes, J. R., Santamarina, J. C. (2008). Clogging: bridge formation and vibration-based destabilization. Canadian Geotechnical Journal, 45 (2), 177–184. doi: https://doi.org/10.1139/t07-088
  17. D’Ortona, U., Thomas, N. (2020). Self-Induced Rayleigh-Taylor Instability in Segregating Dry Granular Flows. Physical Review Letters, 124 (17). doi: https://doi.org/10.1103/physrevlett.124.178001
  18. Capece, M., Ho, R., Strong, J., Gao, P. (2015). Prediction of powder flow performance using a multi-component granular Bond number. Powder Technology, 286, 561–571. doi: https://doi.org/10.1016/j.powtec.2015.08.031
  19. Liu, Y., Guo, X., Lu, H., Gong, X. (2015). An Investigation of the Effect of Particle Size on the Flow Behavior of Pulverized Coal. Procedia Engineering, 102, 698–713. doi: https://doi.org/10.1016/j.proeng.2015.01.170
  20. Valverde, J. M. (2013). Fluidization of Fine Powders: Cohesive versus Dynamic Aggregation. The 14th International Conference On Fluidization – From Fundamentals To Products. Available at: https://dc.engconfintl.org/fluidization_xiv/129
  21. Desu, R. K., Annabattula, R. K. (2019). Particle size effects on the contact force distribution in compacted polydisperse granular assemblies. Granular Matter, 21 (2). doi: https://doi.org/10.1007/s10035-019-0883-9
  22. Olhero, S. M., Ferreira, J. M. F. (2004). Influence of particle size distribution on rheology and particle packing of silica-based suspensions. Powder Technology, 139 (1), 69–75. doi: https://doi.org/10.1016/j.powtec.2003.10.004
  23. Ghadiri, M., Pasha, M., Nan, W., Hare, C., Vivacqua, V., Zafar, U. et. al. (2020). Cohesive Powder Flow: Trends and Challenges in Characterisation and Analysis. KONA Powder and Particle Journal, 37, 3–18. doi: https://doi.org/10.14356/kona.2020018
  24. Blott, S. J., Pye, K. (2012). Particle size scales and classification of sediment types based on particle size distributions: Review and recommended procedures. Sedimentology, 59 (7), 2071–2096. doi: https://doi.org/10.1111/j.1365-3091.2012.01335.x
  25. Allahham, A., Stewart, P., Marriott, J., Mainwaring, D. (2005). Factors Affecting Shear Thickening Behavior of a Concentrated Injectable Suspension of Levodopa. Journal of Pharmaceutical Sciences, 94 (11), 2393–2402. doi: https://doi.org/10.1002/jps.20374
  26. Betancourt, F., Concha, F., Uribe, L. (2015). Settling velocities of particulate systems part 17. Settling velocities of individual spherical particles in Power-Law non-Newtonian fluids. International Journal of Mineral Processing, 143, 125–130. doi: https://doi.org/10.1016/j.minpro.2015.07.005
  27. Herbert, E., Morize, C., Louis-Napoléon, A., Goupil, C., Jop, P., D’Angelo, Y. (2018). Buoyancy-driven destabilization of an immersed granular bed. Journal of Fluid Mechanics, 843, 778–809. doi: https://doi.org/10.1017/jfm.2018.141

Downloads

Published

2020-10-23

How to Cite

Yudiyanto, E., Wardana, I. N. G., Widhiyanuriyawan, D., & Hamidi, N. (2020). An investigation of granular material movement due to instability post impinging upward fluid. Eastern-European Journal of Enterprise Technologies, 5(6 (107), 66–75. https://doi.org/10.15587/1729-4061.2020.209933

Issue

Section

Technology organic and inorganic substances