A study of cerium extraction from Bangka tin slag using hydrochloric acid

Authors

DOI:

https://doi.org/10.15587/1729-4061.2020.210530

Keywords:

Bangka tin slag, cerium, HCl, alkaline fusion, water leaching, optimum conditions

Abstract

Bangka Tin Slag (BTS) was a tin-smelting waste containing high silica and other elements that have high economic value, including cerium, which is a rare earth element. Silica and Ce2O3 contents in BTS were 32.86 % and 1.35 % respectively. Other elements that have high concentrations in BTS include 15.46 % of CaO, 10.88 % of Al2O3, and 9.20% of Fe2O3. The objective of this study was to determine the optimum conditions for cerium extraction using HCl, which includes HCl concentration, temperature, particle size, stirring speed, and dissolution time. In addition, the effect of these parameters on Ce extraction was also studied. The one-factor-at-time method was used to determine the optimum conditions. Pretreatment of BTS with the alkaline fusion method and water leaching was done to reduce both the silica content and increasing its porosity. Alkaline fusion carried out at 700 ℃ using NaOH converts the silica into water-soluble sodium silicate. Characterization of the slag structure before and after the pretreatment process was completely carried out by using X-ray diffraction (XRD), X-ray fluorescence (XRF), Scanning electron microscope (SEM), and optical microscope. Furthermore, measurement of Ce content in the filtrate of the dissolution process was performed with inductively coupled plasma – optical emission spectrometry (ICP-OES). The results showed that the optimum of 75.16 % Ce was extracted by using some parameter conditions, namely by 2.5 M of HCl concentration, at the temperature of 40 ℃, with the particle size of –325 mesh, stirring speed of 150 rpm, and dissolution time of 180 minutes. Each parameter gives a significant effect on Ce extraction, wherein the initial stage, the increase in the value of each parameter gives an increase in Ce extraction and begins to decrease when equilibrium occurs

Author Biographies

Kurnia Trinopiawan, National Nuclear Energy Agency of Indonesia Pasar Jum’at, Jakarta, Indonesia, 12440

Master of Engineering

Center for Nuclear Minerals Technology

Zaki Mubarok, Institut Teknologi Bandung Jl. Ganesha No. 10, Bandung, Indonesia 40132

Doctor of Engineering, Professor

Department of Metallurgical Engineering

Kurnia Setiawan Widana, National Nuclear Energy Agency of Indonesia Pasar Jum’at, Jakarta, Indonesia, 12440

Master of Engineering

Center for Nuclear Minerals Technology

Budi Yuli Ani, National Nuclear Energy Agency of Indonesia Pasar Jum’at, Jakarta, Indonesia, 12440

Associate of Engineering

Center for Nuclear Minerals Technology

Yarianto Sugeng Budi Susilo, National Nuclear Energy Agency of Indonesia Pasar Jum’at, Jakarta, Indonesia, 12440

Master of Science

Center for Nuclear Minerals Technology

Riesna Prassanti, National Nuclear Energy Agency of Indonesia Jum’at, Jakarta, Indonesia, 12440

Master of Engineering

Center for Nuclear Minerals Technology

Iwan Susanto, Politeknik Negeri Jakarta Kukusan, Beji, Depok, Indonesia, 16425

Doctor of Materials Science and Engineering, Assistance Professor

Department of Mechanical Engineering

Sulaksana Permana, Universitas Indonesia Depok, Jawa Barat, Indonesia, 16424

Doctor of Engineering in Metallurgy and Materials

Centre of Mineral Processing and Corrosion Research

Department of Metallurgy and Materials

Johny Wahyuadi Soedarsono, Universitas Indonesia Depok, Jawa Barat, Indonesia, 16424

Doctor of Engineering, Professor

Centre of Mineral Processing and Corrosion Research

Department of Metallurgy and Materials

References

  1. Gergoric, M., Ekberg, C., Steenari, B.-M., Retegan, T. (2017). Separation of Heavy Rare-Earth Elements from Light Rare-Earth Elements Via Solvent Extraction from a Neodymium Magnet Leachate and the Effects of Diluents. Journal of Sustainable Metallurgy, 3 (3), 601–610. doi: https://doi.org/10.1007/s40831-017-0117-5
  2. Soedarsono, J., Hagège, A., Burgard, M., Asfari, Z., Vicens, J. (1996). Liquid-Liquid Extraction of Rare Earth Metals Using 25,27-Dicarboxy-26,28-Dimethoxy-5,11,17,23-Tetra-tert-Butylcalix[4]Arene. Berichte Der Bunsengesellschaft Für Physikalische Chemie, 100 (4), 477–481. doi: https://doi.org/10.1002/bbpc.19961000412
  3. Massari, S., Ruberti, M. (2013). Rare earth elements as critical raw materials: Focus on international markets and future strategies. Resources Policy, 38 (1), 36–43. doi: https://doi.org/10.1016/j.resourpol.2012.07.001
  4. Allain, E., Kanari, N., Diot, F., Yvon, J. (2019). Development of a process for the concentration of the strategic tantalum and niobium oxides from tin slags. Minerals Engineering, 134, 97–103. doi: https://doi.org/10.1016/j.mineng.2019.01.029
  5. Løvik, A. N., Hagelüken, C., Wäger, P. (2018). Improving supply security of critical metals: Current developments and research in the EU. Sustainable Materials and Technologies, 15, 9–18. doi: https://doi.org/10.1016/j.susmat.2018.01.003
  6. Zhang, S., Ding, Y., Liu, B., Chang, C. (2017). Supply and demand of some critical metals and present status of their recycling in WEEE. Waste Management, 65, 113–127. doi: https://doi.org/10.1016/j.wasman.2017.04.003
  7. Kim, P., Anderko, A., Navrotsky, A., Riman, R. (2018). Trends in Structure and Thermodynamic Properties of Normal Rare Earth Carbonates and Rare Earth Hydroxycarbonates. Minerals, 8 (3), 106. doi: https://doi.org/10.3390/min8030106
  8. Younis, A., Chu, D., Li, S. (2016). Cerium Oxide Nanostructures and their Applications. Functionalized Nanomaterials. doi: https://doi.org/10.5772/65937
  9. Fachruddin, F., Susanto, I., Chen, C.-C., Setijogiarto, N. E., Zainuri, F., Permana, S., Soedarsono, J. W. (2020). Surface modification of magnetic TiO2 core-shell with doped cerium for enhancement of photocatalytic performance. Eastern-European Journal of Enterprise Technologies, 3 (6 (105)), 13–20. doi: https://doi.org/10.15587/1729-4061.2020.203186
  10. Amer, T. E., Abdella, W. M., Wahab, G. M. A., El-Sheikh, E. M. (2013). A suggested alternative procedure for processing of monazite mineral concentrate. International Journal of Mineral Processing, 125, 106–111. doi: https://doi.org/10.1016/j.minpro.2013.10.004
  11. Habashi, F. (2013). Extractive metallurgy of rare earths. Canadian Metallurgical Quarterly, 52 (3), 224–233. doi: https://doi.org/10.1179/1879139513y.0000000081
  12. Munir, B., Permana, S., Amilia, A., Maksum, A., Soedarsono, J. W. (2019). Initial Study for Cerium and Lanthanum Extraction from Bangka Tin Slag through NaOH and HClO4 Leaching. MATEC Web of Conferences, 269, 07003. doi: https://doi.org/10.1051/matecconf/201926907003
  13. Szamałek, K., Konopka, G., Zglinicki, K., Marciniak-Maliszewska, B. (2013). New potential source of rare earth elements. Gospodarka Surowcami Mineralnymi - Mineral Resources Management, 29 (4). doi: https://doi.org/10.2478/gospo-2013-0041
  14. Gaballah, I., Allain, E., Meyer-Joly, M.-C., Malau, K. (1992). A possible method for the characterization of amorphous slags: Recovery of refractory metal oxides from tin slags. Metallurgical and Materials Transactions B, 23 (3), 249–259. doi: https://doi.org/10.1007/bf02656280
  15. Subramanian, C., Suri, A. K. (1998). Recovery of Niobium and Tantalum from Low Grade Tin Slag – A Hydrometallurgical Approach. Environmental & Waste Management in NoN-Ferrous Metallurgical Industries, 100–107.
  16. Walawalkar, M., Nichol, C. K., Azimi, G. (2016). Process investigation of the acid leaching of rare earth elements from phosphogypsum using HCl, HNO3, and H2SO4. Hydrometallurgy, 166, 195–204. doi: https://doi.org/10.1016/j.hydromet.2016.06.008
  17. Sinha, S., Abhilash, Meshram, P., Pandey, B. D. (2016). Metallurgical processes for the recovery and recycling of lanthanum from various resources – A review. Hydrometallurgy, 160, 47–59. doi: https://doi.org/10.1016/j.hydromet.2015.12.004
  18. Chi, R., Li, Z., Peng, C., Gao, H., Xu, Z. (2006). Preparation of enriched cerium oxide from bastnasite with hydrochloric acid by two-step leaching. Metallurgical and Materials Transactions B, 37 (2), 155–160. doi: https://doi.org/10.1007/bf02693144
  19. Panda, R., Kumari, A., Jha, M. K., Hait, J., Kumar, V., Rajesh Kumar, J., Lee, J. Y. (2014). Leaching of rare earth metals (REMs) from Korean monazite concentrate. Journal of Industrial and Engineering Chemistry, 20 (4), 2035–2042. doi: https://doi.org/10.1016/j.jiec.2013.09.028
  20. Ruan, Z., Li, M., Gao, K., Zhang, D., Huang, L., Xu, W., Liu, X. (2019). Effect of Particle Size Refinement on the Leaching Behavior of Mixed Rare-Earth Concentrate Using Hydrochloric Acid. ACS Omega, 4 (6), 9813–9822. doi: https://doi.org/10.1021/acsomega.9b01141
  21. Moldoveanu, G. A., Papangelakis, V. G. (2013). Recovery of rare earth elements adsorbed on clay minerals: II. Leaching with ammonium sulfate. Hydrometallurgy, 131-132, 158–166. doi: https://doi.org/10.1016/j.hydromet.2012.10.011
  22. BBorra, C. R., Pontikes, Y., Binnemans, K., Van Gerven, T. (2015). Leaching of rare earths from bauxite residue (red mud). Minerals Engineering, 76, 20–27. doi: https://doi.org/10.1016/j.mineng.2015.01.005
  23. Soedarsono, J. W., Permana, S., Hutauruk, J. K., Adhyputra, R., Rustandi, A., Maksum, A. et. al. (2018). Upgrading tantalum and niobium oxides content in Bangka tin slag with double leaching. IOP Conference Series: Materials Science and Engineering, 316, 012052. doi: https://doi.org/10.1088/1757-899x/316/1/012052
  24. Frey, D. D., Engelhardt, F., Greitzer, E. M. (2003). A role for “one-factor-at-a-time” experimentation in parameter design. Research in Engineering Design, 14 (2), 65–74. doi: https://doi.org/10.1007/s00163-002-0026-9
  25. Kim, R., Cho, H., Han, K., Kim, K., Mun, M. (2016). Optimization of Acid Leaching of Rare-Earth Elements from Mongolian Apatite-Based Ore. Minerals, 6 (3), 63. doi: https://doi.org/10.3390/min6030063
  26. Permana, S., Rustandi, A., Majid, R. A. (2017). Thermodynamic analysis with software: a case study of upgrading rare earth elements content in bangka tin slag. Far East Journal of Electronics and Communications, 17 (5), 1211–1220. doi: https://doi.org/10.17654/ec017051211
  27. Feng, X., Long, Z., Cui, D., Wang, L., Huang, X., Zhang, G. (2013). Kinetics of rare earth leaching from roasted ore of bastnaesite with sulfuric acid. Transactions of Nonferrous Metals Society of China, 23 (3), 849–854. doi: https://doi.org/10.1016/s1003-6326(13)62538-8
  28. Purwani, M. V., Trinopiawan, K., Poernomo, H., Suyanti, Pusporini, N. D., Amiliana, R. A. (2019). Separation of Ce, La and Nd in rare earth hydroxide (REOH) by oxidation with potassium permanganate and precipitation. Journal of Physics: Conference Series, 1198 (3), 032003. doi: https://doi.org/10.1088/1742-6596/1198/3/032003

Downloads

Published

2020-08-31

How to Cite

Trinopiawan, K., Mubarok, Z., Widana, K. S., Ani, B. Y., Susilo, Y. S. B., Prassanti, R., Susanto, I., Permana, S., & Soedarsono, J. W. (2020). A study of cerium extraction from Bangka tin slag using hydrochloric acid. Eastern-European Journal of Enterprise Technologies, 4(6 (106), 24–30. https://doi.org/10.15587/1729-4061.2020.210530

Issue

Section

Technology organic and inorganic substances