Influence of phase transitions on the temperature behavior of photoluminescence spectra in a (N(CH3)4)2MnCl4 crystal

Authors

DOI:

https://doi.org/10.15587/1729-4061.2020.210773

Keywords:

photoluminescence, glow spectra, excitation spectra, phase transitions

Abstract

Monocrystals (N(CH3)4)2MnCl4 were grown from an aqueous solution of salts by slow evaporation at room temperature. The effect of phase transitions on the behavior of photoluminescence spectra, as well as excitation spectra and time of attenuation of the glow band of 539 nm is studied in the temperature range of 4.5‒300 K. Based on the studies of the spectra of photoluminescence of the (N(CH3)4)2MnCl4, the glow bands, which are caused by the glow of the Mn2+ ion and correspond to the 4Т16А1 transition, were determined. The temperature evolution of photoluminescence spectra (4.5–300 K) of the (N(CH3)4)2MnCl4 crystal demonstrates anomalies of their parameters at the points of phase transitions. Temperature dependences of crystal photoluminescence spectra of the (N(CH3)4)2MnCl4 crystal prove the existence of phase transitions in the temperature intervals from 100 to 300 K. The excitation spectra for the luminescence band of 539 nm and their temperature evolution (4.5–300 K) are shown. The bands of around 2.93 and 2.96 eV are quickly damped with temperature, so at the temperatures above 170 K and 270 K, the bands of 2.96 and 2.93 eV are not observed, respectively. Peaks in the excitation spectrum correspond to electron transitions from the basic state of 6A1 Mn2+ to various excited states  (Td). Their excitation energies are explained by a model of crystals using the Tanabe-Sugano diagrams. The Racah B and C parameters, as well as the splitting of crystal field Δ, were calculated based on the Tanabe-Sugano diagrams for d5 of electronic configuration. The temperature behavior of the time of attenuation of the photoluminescence band of 539 µm was studied. The resulting time of attenuation of the photoluminescence band increases at an increase in temperature. The kinetics of attenuation of the photoluminescence band of 539 µm of a crystal is well described by an exponential function

Author Biographies

Hryhorii Ilchuk, Lviv Polytechnic National University S. Bandery str., 12, Lviv, Ukraine, 79013

Doctor of Physical and Mathematical Sciences, Professor

Department of General Physics

Andrii Kashuba, Lviv Polytechnic National University S. Bandery str., 12, Lviv, Ukraine, 79013

PhD, Senior Researcher

Department of General Physics

Ivan Kuno, Ivan Franko National University of Lviv Universytetska str., 1, Lviv, Ukraine, 79000

PhD, Senior Researcher

Department of Optoelectronics and Information Technologies

Sergey Sveleba, Ivan Franko National University of Lviv Universytetska str., 1, Lviv, Ukraine, 79000

Doctor of Physical and Mathematical Sciences, Professor

Department of Optoelectronics and Information Technologies

Taras Malyi, Ivan Franko National University of Lviv Universytetska str., 1, Lviv, Ukraine, 79000

Кандидат фізико-математичних наук, старший науковий співробітник

Кафедра експериментальної фізики

Roman Petrus, Lviv Polytechnic National University S. Bandery str., 12, Lviv, Ukraine, 79013

PhD, Senior Researcher

Department of General Physics

Volodymyr Tsiumra, Ivan Franko National University of Lviv Universytetska str., 1, Lviv, Ukraine, 79000

Junior Researcher

Department of Experimental Physics

Ihor Semkiv, Lviv Polytechnic National University S. Bandery str., 12, Lviv, Ukraine, 79013

PhD, Senior Researcher

Department of General Physics

References

  1. Kushnir, O. S., Kityk, A. V., Dzyubanski, V. S., Shopa, R. Y. (2011). Critical behaviour of optical birefringence near the normal–incommensurate phase transition in [N(CH3)4]2ZnCl4crystals under the influence of hydrostatic pressure. Journal of Physics: Condensed Matter, 23 (22), 225403. doi: https://doi.org/10.1088/0953-8984/23/22/225403
  2. Kunyo, I. M., Kashuba, A. I., Karpa, I. V., Stakhura, V. B., Sveleba, S. A., Katerynchuk, I. M. et. al. (2018). The band energy structure of (N(CH3)4)2ZnCl4 crystals. Journal of Physical Studies, 22 (3). doi: https://doi.org/10.30970/jps.22.3301
  3. Kashuba, A. I., Kunyo, I. M., Malyi, T. S., Ilchuk, H. A., Petrus, R. Yu., Semkiv, I. V. et. al. (2019). The spectral properties of (N(CH3)4)2MnCl4 crystal Functional Materials, 26 (3), 472–476. doi: https://doi.org/10.15407/fm26.03.472
  4. Rodríguez-Lazcano, Y., Nataf, L., Rodríguez, F. (2009). Electronic structure and luminescence of[(CH3)4N]2MnX4(X=Cl,Br)crystals at high pressures by time-resolved spectroscopy: Pressure effects on the Mn-Mn exchange coupling. Physical Review B, 80 (8). doi: https://doi.org/10.1103/physrevb.80.085115
  5. Kapustianyk, V., Semak, S., Panasyuk, M., Rudko, M., Rudyk, V. (2019). Temperature evolution of the intra-ion absorption spectra of (NH2(C2H5)2)2CoCl4 crystals in the region of their phase transitions. Phase Transitions, 92 (4), 396–405. doi: https://doi.org/10.1080/01411594.2019.1591407
  6. Kushnir, O. S., Shchepanskyi, P. A., Stadnyk, V. Y., Fedorchuk, A. O. (2019). Relationships among optical and structural characteristics of ABSO4 crystals. Optical Materials, 95, 109221. doi: https://doi.org/10.1016/j.optmat.2019.109221
  7. Karpa, I. V., Sveleba, S. A., Kunyo, I. M., Katerynchuk, I. M., Semotyuk, O. V., Blashko, O. I. (2010). Effect of the number of defect density waves on the dynamics of the soliton system in [N(CH3)4]2CuCl4 and [N(CH3)4]2Zn0.98Ni0.02Cl4 crystals. Crystallography Reports, 55 (5), 815–820. doi: https://doi.org/10.1134/s1063774510050172
  8. Sveleba, S. A., Karpa, I. V., Katerynchuk, I. M., Kunyo, I. M., Phitsych, E. I. (2014). Influence of the thickness of [N(CH3)4]2Zn0.75Mn0.25Cl4 crystal on the phase-transition temperature. Crystallography Reports, 59 (2), 229–237. doi: https://doi.org/10.1134/s1063774514020266
  9. Mashiyama, H., Koshiji, N. (1989). A structural study of phase transitions in [N(CH3)4]2MnCl4. Acta Crystallographica Section B Structural Science, 45 (5), 467–473. doi: https://doi.org/10.1107/s0108768189006981
  10. Marco De Lucas, M. C., Rodriguez, F., Moreno, M. (1990). Optical investigations on {N(CH3)4}2MnCL4: A new phase transition at 90 K. Ferroelectrics, 109 (1), 21–26. doi: https://doi.org/10.1080/00150199008211384
  11. Ben Bechir, M., Karoui, K., Tabellout, M., Guidara, K., Ben Rhaiem, A. (2014). Alternative current conduction mechanisms of organic-inorganic compound [N(CH3)3H]2ZnCl4. Journal of Applied Physics, 115 (15), 153708. doi: https://doi.org/10.1063/1.4871662
  12. Zhou, Q., Dolgov, L., Srivastava, A. M., Zhou, L., Wang, Z., Shi, J. et. al. (2018). Mn2+and Mn4+red phosphors: synthesis, luminescence and applications in WLEDs. A review. Journal of Materials Chemistry C, 6(11), 2652–2671. doi: https://doi.org/10.1039/c8tc00251g
  13. Kashuba, A., Zhydachevskyy, Y., Semkiv, I., Franiv, A., Kushnir, O. (2018). Photoluminescence in the solid solution In0.5Tl0.5I. Ukrainian Journal of Physical Optics, 19 (1), 1. doi: https://doi.org/10.3116/16091833/19/1/1/2018
  14. Artem’ev, A. V., Davydova, M. P., Berezin, A. S., Brel, V. K., Morgalyuk, V. P., Bagryanskaya, I. Y., Samsonenko, D. G. (2019). Luminescence of the Mn2+ ion in non-Oh and Td coordination environments: the missing case of square pyramid. Dalton Transactions, 48 (43), 16448–16456. doi: https://doi.org/10.1039/c9dt03283e
  15. Zhang, J., Zou, H., Qing, Q., Yang, Y., Li, Q., Liu, Z. et. al. (2003). Effect of Chemical Oxidation on the Structure of Single-Walled Carbon Nanotubes. The Journal of Physical Chemistry B, 107 (16), 3712–3718. doi: https://doi.org/10.1021/jp027500u
  16. Griffith, J. S. (2009). The Theory of Transition-Metal Ions. Cambridge University Press, 468. Available at: https://www.cambridge.org/ua/academic/subjects/chemistry/chemistry-general-interest/theory-transition-metal-ions?format=PB&isbn=9780521115995
  17. Sugano, S. (1970). Multiplets of Transition-Metal Ions in Crystals. Academic Press, 348. Available at: https://www.elsevier.com/books/multiplets-of-transition-metal-ions-in-crystals/sugano/978-0-12-676050-7
  18. Liem, L. N., Tran, N. (2018). Calculations of the Racah parameter B for Mn4+ and Mn2+ ions doped in CaAl2O4. IOP Conference Series: Materials Science and Engineering, 343, 012026. doi: https://doi.org/10.1088/1757-899x/343/1/012026
  19. Bolesta, I., Furgala, Y., Kityk, I. (1996). Effects of phase transitions in luminescence features of [N(CH3)4]2MnCl4 single crystals. Phase Transitions, 56 (1), 1–10. doi: https://doi.org/10.1080/01411599608207834

Downloads

Published

2020-08-31

How to Cite

Ilchuk, H., Kashuba, A., Kuno, I., Sveleba, S., Malyi, T., Petrus, R., Tsiumra, V., & Semkiv, I. (2020). Influence of phase transitions on the temperature behavior of photoluminescence spectra in a (N(CH3)4)2MnCl4 crystal. Eastern-European Journal of Enterprise Technologies, 4(12 (106), 24–30. https://doi.org/10.15587/1729-4061.2020.210773

Issue

Section

Materials Science