Determining the effective indicators of a rotary-piston motor operation

Authors

DOI:

https://doi.org/10.15587/1729-4061.2020.211425

Keywords:

rotary-piston air motor, energy performance indicators, operating parameters, hourly consumption, expansion

Abstract

This paper reports the results of an experimental study of the prototype rotary-piston air motor RPD-4,4/1,75 in the form of speed characteristics.

The maxima of the air motor's performance effective indicators have been determined, as well as the rotation change ranges that correspond to them.

It has been established that for the intake receiver's air pressure change range within 0.4...0.8 MPa the maximum value of effective power is 1.7...2.5 kW. In this case, the maximum value of the torque and mean effective pressure for a given pressure range in the intake receiver is 17.0...18.2 N∙m and 0.13...0.18 MPa, respectively.

The dependence has been derived of the hourly air consumption on the rotations and pressure in the intake receiver. Depending on the test mode, the hourly air consumption is within 25…226 kg/hour.

It has been established that the minimum values of the specific effective air consumption correspond to 800...1,000 rpm. Thus, for a maximum value of air pressure in the intake receiver of 0.8 MPa, the specific effective consumption is 60.8...93.2 kg/(kW∙h), for the minimum value of 0.4 MPa – 49.7...81.3 kg/(kW∙h).

The potential of the adiabatic expansion capacity has been determined, brought to the air motor, as well as the effective adiabatic efficiency. The maximum efficiency of the air motor corresponds to 800...1,000 rpm. In this case, the maximum efficiency value was achieved at a pressure in the intake receiver of 0.4 MPa; it is 0.41.

The dependences have been derived of the change in the pressure of spent air in the exhaust receiver, the maximum value of which does not exceed 0.075 MPa

Author Biographies

Oleksandr Mytrofanov, Admiral Makarov National University of Shipbuilding Heroiv Ukrainy ave., 9, Mykolaiv, Ukraine, 54025

PhD, Associate Professor

Department of Internal Combustion Engines, Plants and Technical Exploitation

Arkadii Proskurin, Admiral Makarov National University of Shipbuilding Heroiv Ukrainy ave., 9, Mykolaiv, Ukraine, 54025

PhD, Associate Professor

Department of Internal Combustion Engines, Plants and Technical Exploitation

Andrii Poznanskyi, Admiral Makarov National University of Shipbuilding Heroiv Ukrainy ave., 9, Mykolaiv, Ukraine, 54025

PhD

Department of Mechanical Engineering and Manufacturing Engineering

References

  1. Mityukov, N. V., Tulumbasov, V. V. (2012). O vozmozhnosti konstruktivnoy realizatsii podvodnogo buksirovshchika na osnove pnevmaticheskoy mashiny. Noviy universitet. Seriya: Tehnicheskie nauki, 3, 78–79.
  2. Prilutskiy, I. K., Arsenyev, I. A., Molodov, M. A., Prilutskiy, A. A., Shevtsova, A. I. (2015). Low pressure gas piston expander. Nauchniy zhurnal NIU ITMO. Seriya «Holodil'naya tehnika i konditsionirovanie», 3. Available at: http://refrigeration.ihbt.ifmo.ru/file/article/14016.pdf
  3. Abramchuk, F., Voronkov, A., Nikitchenko, I. (2010). Advantages and expediency of piston pneumatic engine application as а part of automobile hybrid power unit. Vestnik HNADU, 48, 200–206. Available at: https://cyberleninka.ru/article/n/o-dostoinstvah-i-tselesoobraznosti-primeneniya-porshnevogo-pnevmodvigatelya-v-sostave-avtomobilnoy-gibridnoy-silovoy-ustanovki/viewer
  4. Turenko, A. N., Bogomolov, V. A., Abramchuk, F. I. et. al. (2009). Pnevmodvigatel' dlya avtomobil'noy gibridnoy silovoy ustanovki. Avtomobil'niy transport, 24, 7–10.
  5. Zinevich, V. D., Geshlin, L. A. (1982). Porshnevye i shesterennye pnevmodvigateli gornoshahtnogo oborudovaniya. Moscow: Nedra, 200.
  6. Manish, K., Pravin, P. R., Sorathiya, A. S. (2012). Study and development of compressed air engine single cylinder: a review study. International Journal of Advanced Engineering Technology, III (I), 271–274. Available at: https://www.technicaljournalsonline.com/ijeat/VOL%20III/IJAET%20VOL%20III%20ISSUE%20I%20JANUARY%20MARCH%202012/61%20IJAET%20Vol%20III%20Issue%20I%202012.pdf
  7. Lavhale, R., Datir, D., Wagh, A. (2018). Application of Compressed Air Engine to Replace SI Engine: A Review. International Research Journal of Engineering and Technology (IRJET), 05 (05), 2935–2938. Available at: https://www.irjet.net/archives/V5/i5/IRJET-V5I5560.pdf
  8. Bhardwaj, A., Aryan, A., Bansal, G. (2017). Modification of Single Cylinder IC Engine to Run on Compressed Air-A Review. International Journal of Environmental Sciences & Natural Resources, 5 (3), 57–62. doi: https://doi.org/10.19080/ijesnr.2017.05.555662
  9. Rixon, K. L., Mohammed Shareef, V., Prajith, K. S., Sarath, K., Sreejith, S., Sreeraj, P. (2016). Fabrication of Compressed Air Bike. International Research Journal of Engineering and Technology (IRJET), 03 (03), 1863–1866. Available at: https://www.irjet.net/archives/V3/i3/IRJET-V3I3389.pdf
  10. Abramchuk, F., Kharchenko, A., Zhilin, S., Voronkov, A., Nikitchenko, I. (2010). On choosing rational set parameters of the piston pneumatic engine with valve air-distribution performance. Avtomobil'niy transport, 27, 141–147. Available at: https://dspace.khadi.kharkov.ua/dspace/bitstream/123456789/144/1/27.pdf
  11. Huang, C.-Y., Hu, C.-K., Yu, C.-J., Sung, C.-K. (2013). Experimental Investigation on the Performance of a Compressed-Air Driven Piston Engine. Energies, 6 (3), 1731–1745. doi: https://doi.org/10.3390/en6031731
  12. Goghari, J. U., Vora, C., Bhatt, J. (2015). Design Of Small Capacity Automobile Engine To Run On Compressed Air. International Journal For Scientific Research & Development, 3 (3), 1102–1104. Available at:https://www.academia.edu/13631009/Design_Of_Small_Capacity_Automobile_Engine_To_Run_On_Compressed_Air
  13. Allam, S., Zakaria, M. (2018). Experimental Investigation of Compressed Air engine Performance. International Journal of Engineering Inventions, 7 (1), 13–20. Available at: http://www.ijeijournal.com/papers/Vol.7-Iss.2/C0702021320.pdf
  14. Sumanth, K., Nagababu, P., Kishore, B. (2019). Compressed Air Bike with Modification of 4-Stroke Si Engine. International Journal of Science and Research (IJSR), 8 (11), 310–312. Available at: https://www.ijsr.net/archive/v8i11/ART20202409.pdf
  15. Voronkov, A., Lisina, O., Nikitchenko, I. (2014). Geometry definition of spool valve windows of the pneumatic engine. Avtomobil'niy transport, 34, 39–43. Available at: https://dspace.khadi.kharkov.ua/dspace/bitstream/123456789/924/1/07_34.pdf
  16. Akif Kunt, M. (2016). Transformation of a Piston Engine into a Compressed Air Engine with Rotary Valve. SSRG International Journal of Mechanical Engineering (SSRG – IJME), 3 (11). Available at: https://www.researchgate.net/publication/320042001_Transformation_of_a_piston_engine_into_a_compressed_air_engine_with_rotary_valve
  17. Voronkov, A. (2014). Variation of economic indicator indexes of the pneumatic engine according to speed performance. Vestnik Har'kovskogo natsional'nogo avtomobil'no-dorozhnogo universiteta, 67, 13–18. Available at: https://dspace.khadi.kharkov.ua/dspace/bitstream/123456789/1054/1/V_67_02.pdf
  18. Voronkov, A. (2015). Change of effective economic indicators of the work of piston air motor by speed recommendation. Vestnik Har'kovskogo natsional'nogo avtomobil'no-dorozhnogo universiteta, 68, 57–61. Available at: https://dspace.khadi.kharkov.ua/dspace/bitstream/123456789/1131/1/V_68_10.pdf
  19. Yu, Q., Cai, M. (2015). Experimental Analysis of a Compressed Air Engine. Journal of Flow Control, Measurement & Visualization, 03 (04), 144–153. doi: https://doi.org/10.4236/jfcmv.2015.34014
  20. Mytrofanov, O. S., Shabalin, Yu. V., Biriuk, T. F., Yefenina, L. O. (2019). Pat. No. 120489 UA. Porshneva mashyna. No. a201902189; declareted: 10.09.2019; published: 10.12.2019, Bul. No. 23.
  21. Mytrofanov, O. S. (2019). Stand for test and research of rotor-piston engines. Collection of Scientific Publications NUS, 1 (475), 51–57. doi: https://doi.org/10.15589/znp2019.1(475).7
  22. Borisenko, K. S. (1958). Pnevmaticheskie dvigateli gornyh mashin. Moscow: Ugletehizdat, 204.
  23. Turenko, A. N., Bogomolov, V. A., Abramchuk, F. I., Harchenko, A. I., Shilov, A. I. (2008). O vybore parametrov porshnevogo pnevmodvigatelya, rabotayushchego v sostave gibridnoy energoustanovki avtomobilya. Avtomobil'niy transport, 22, 7–13. Available at: http://nbuv.gov.ua/UJRN/at_2008_22_1

Downloads

Published

2020-10-31

How to Cite

Mytrofanov, O., Proskurin, A., & Poznanskyi, A. (2020). Determining the effective indicators of a rotary-piston motor operation. Eastern-European Journal of Enterprise Technologies, 5(8 (107), 80–85. https://doi.org/10.15587/1729-4061.2020.211425

Issue

Section

Energy-saving technologies and equipment