Research of antiresonance threemass vibratory machine with a vibration exciter in the form of a passive autobalancer
DOI:
https://doi.org/10.15587/1729-4061.2020.213724Keywords:
inertial vibration exciter, resonance vibrations, anti-resonance vibratory machine, auto-balancer, three-mass vibratory machine, Sommerfeld effectAbstract
A three-mass anti-resonance vibratory machine with a vibration exciter in the form of a passive auto-balancer has been analytically synthesized. In the vibratory machine, platforms 1 and 2 are visco-elastically attached to platform 3. Platform 3 is visco-elastically attached to the base. The motion of loads relative to the auto-balancer housing is hindered by the forces of viscous resistance.
A theoretical study has shown that the vibratory machine possesses three resonance frequencies and three corresponding forms of platforms' oscillations. Values for the parameters of supports that ensure the existence of an anti-resonance form of motion have been analytically selected. Under an anti-resonance form, platform 3 is almost non-oscillating while platforms 1 and 2 oscillate in the opposite phase.
In the vibratory machine, platform 1 can be active (working), platform 2 will then be reactive (a dynamic vibration damper), and vice versa. At the same time, the vibratory machine will operate when mounting a vibration exciter both on platform 1 and platform 2.
An anti-resonance form would occur when the loads get stuck in the vicinity of the second resonance frequency of the platforms' oscillations.
Given the specific parameters of the vibratory machine, numerical methods were used to investigate its dynamic characteristics. Numerical calculations have shown the following for the case of small internal and external resistance forces in the vibratory machine:
‒ theoretically, there are seven possible modes of load jam;
‒ the second (anti-resonance) form of platform oscillations is theoretically implemented at load jamming modes 3 and 4;
‒ jamming mode 3 is locally asymptotically stable while load jamming mode 4 is unstable;
‒ for the loads to get stuck in the vicinity of the second resonance frequency, one needs to provide the vibratory machine with the initial conditions close to the jamming mode 3, or smoothly accelerate the rotor to the working frequency;
‒ the dynamic characteristics of the vibratory machine can be controlled in a wide range by changing both the rotor speed and the external and internal forces of viscous resistance.
The results reported here are applicable for the design of anti-resonance three-mass vibratory machines for general purposesReferences
- Kryukov, B. I. (1967). Dinamika vibratsionnyh mashin rezonansnogo tipa. Kyiv: Nauk. dumka, 210.
- Sommerfeld, A. (1904). Beitrage zum dinamischen Ausbay der Festigkeislehre. Zeitschriff des Vereins Deutsher Jngeniere, 48 (18), 631–636.
- Yaroshevich, N. P., Silivoniuk, A. V. (2013). About some features of run-updynamicof vibration machines with self-synchronizing inertion vibroexciters. Naukovyi visnyk Natsionalnoho hirnychoho universytetu, 4, 70–75. Available at: http://nbuv.gov.ua/UJRN/Nvngu_2013_4_14
- Kuzo, I. V., Lanets, O. V., Gurskyi, V. E. (2013). Synthesis of low-frequency resonance vibratory machines with an aeroinertia drive. Naukovyi visnyk Natsionalnoho hirnychoho universytetu, 2, 60–67. Available at: http://nbuv.gov.ua/UJRN/Nvngu_2013_2_11
- Lu, C.-J., Tien, M.-H. (2012). Pure-rotary periodic motions of a planar two-ball auto-balancer system. Mechanical Systems and Signal Processing, 32, 251–268. doi: https://doi.org/10.1016/j.ymssp.2012.06.001
- Artyunin, A. I., Eliseyev, S. V. (2013). Effect of “Crawling” and Peculiarities of Motion of a Rotor with Pendular Self-Balancers. Applied Mechanics and Materials, 373-375, 38–42. doi: https://doi.org/10.4028/www.scientific.net/amm.373-375.38
- Jung, D., DeSmidt, H. (2017). Nonsynchronous Vibration of Planar Autobalancer/Rotor System With Asymmetric Bearing Support. Journal of Vibration and Acoustics, 139 (3). doi: https://doi.org/10.1115/1.4035814
- Goncharov, V., Filimonikhin, G., Nevdakha, A., Pirogov, V. (2017). An increase of the balancing capacity of ball or roller-type auto-balancers with reduction of time of achieving auto-balancing. Eastern-European Journal of Enterprise Technologies, 1 (7 (85)), 15–24. doi: https://doi.org/10.15587/1729-4061.2017.92834
- Yatsun, V., Filimonikhin, G., Dumenko, K., Nevdakha, A. (2017). Equations of motion of vibration machines with a translational motion of platforms and a vibration exciter in the form of a passive auto-balancer. Eastern-European Journal of Enterprise Technologies, 5 (1 (89)), 19–25. doi: https://doi.org/10.15587/1729-4061.2017.111216
- Yatsun, V., Filimonikhin, G., Dumenko, K., Nevdakha, A. (2017). Search for two-frequency motion modes of single-mass vibratory machine with vibration exciter in the form of passive auto-balancer. Eastern-European Journal of Enterprise Technologies, 6 (7 (90)), 58–66. doi: https://doi.org/10.15587/1729-4061.2017.117683
- Yatsun, V., Filimonikhin, G., Dumenko, K., Nevdakha, A. (2018). Search for the dualfrequency motion modes of a dualmass vibratory machine with a vibration exciter in the form of passive autobalancer. Eastern-European Journal of Enterprise Technologies, 1 (7 (91)), 47–54. doi: https://doi.org/10.15587/1729-4061.2018.121737
- Yatsun, V., Filimonikhin, G., Haleeva, A., Krivoblotsky, L., Machok, Y., Mezitis, M. et. al. (2020). Searching for the twofrequency motion modes of a threemass vibratory machine with a vibration exciter in the form of a passive autobalancer. Eastern-European Journal of Enterprise Technologies, 4 (7 (106)), 103–111. doi: https://doi.org/10.15587/1729-4061.2020.209269
- Zhao, J., Liu, L., Song, M., Zhang, X. (2015). Influencing Factors of Anti-Resonant Inertial Resonant Machine Vibration Isolation System. 2015 3rd International Conference on Computer and Computing Science (COMCOMS). doi: https://doi.org/10.1109/comcoms.2015.22
- Xiaohao, L., Tao, S. (2016). Dynamic performance analysis of nonlinear anti-resonance vibrating machine with the fluctuation of material mass. Journal of Vibroengineering, 18 (2), 978–988. Available at: https://www.jvejournals.com/article/16559/pdf
- Korendiy, V., Zakharov, V. (2017). Substantiation of Parameters and Analysis of Operational Characteristics of Oscillating Systems of Vibratory Finishing Machines. Ukrainian Journal of Mechanical Engineering and Materials Science, 3(2), 67–78. doi: https://doi.org/10.23939/ujmems2017.02.067
- Kuzio, I., Zakharov, V., Korendiy, V. (2018). Substantiation of inertial, stiffness and excitation parameters of vibratory lapping machine with linear oscillations of laps. Ukrainian Journal of Mechanical Engineering and Materials Science, 4 (2), 26–39. doi: https://doi.org/10.23939/ujmems2018.02.026
- Gursky, V., Lanets, O. (2015). Modernization of high-frequency vibratory table with an electromagnetic drive: theoretical principle and modeling. Mathematical Models in Engineering, 1 (2), 34–42. Available at: https://www.jvejournals.com/article/16483/pdf
- Korendiy, V., Kachur, O., Novitskyi, Y., Mazuryk, V., Sereda, V. (2019). Substantiation of parameters and modelling the operation of three-mass vibratory conveyer with directed oscillations of the working element. Avtomatyzatsiya vyrobnychykh protsesiv u mashynobuduvanni ta pryladobuduvanni, 53, 84–100. doi: https://doi.org/10.23939/istcipa2019.53.084
- Solona, O. (2020). Dynamic synchronization of vibration exciters of the three-mass vibration mill. Przegląd Elektrotechniczny, 1 (3), 163–167. doi: https://doi.org/10.15199/48.2020.03.35
- Neyman, L. A., Neyman, V. Y. (2016). Dynamic model of a vibratory electromechanical system with spring linkage. 2016 11th International Forum on Strategic Technology (IFOST). doi: https://doi.org/10.1109/ifost.2016.7884234
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Volodymyr Yatsun, Gennadiy Filimonikhin, Vladimir Pirogov, Volodymyr Amosov, Petro Luzan
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.