Investigating equilibrium in the system of a hydrogen sulfide-quinhydrone absorbing solution

Authors

DOI:

https://doi.org/10.15587/1729-4061.2020.214425

Keywords:

hydrogen sulfide, gas cleaning, chemisorption, quinhydrone method, absorbent solution, phase equilibrium

Abstract

This paper reports a study into the influence of sodium carbonate concentration (10, 30, and 50 kg/m3) in the simultaneous presence of sodium thiosulfate (250 kg/m3) and quinhydrone (5 kg/m3) on the coefficient of the phase distribution of hydrogen sulfide in a quinhydrone absorbing solution. The research was carried out at the laboratory installation using chemical analysis methods of liquid and gas phases. It has been found that the coefficient of phase distribution increases dramatically with an increase in the degree of saturation of the quinhydrone solution with hydrogen sulfide. At the same time, in the presence of sodium thiosulfate in quinhydrone absorbing solutions, the coefficient of phase distribution increases compared to carbonate solutions of the same concentration. Thus, the partial hydrogen sulfide pressure over a quinhydrone solution at low degrees of hydrogen sulfide saturation (up to 3 %) is 5...10 times larger than that over soda solution, while at high degrees (60...80 %) it is almost the same. It can be argued that at the high concentrations of sodium carbonate and the degree of the saturation of quinhydrone solution with hydrogen sulfide the effect of sodium thiosulfate on the partial pressure of hydrogen sulfide decreases. An equation of the effect exerted by the NaНS concentration and the starting Na2CO3 concentration on the H2S partial pressure over quinhydrone solutions has been proposed. Based on the experimental studies' results, the equilibrium constant values for a hydrogen sulfide chemisorption reaction involving a quinhydrone solution have been calculated. To ensure the high absorption capacity, the process of hydrogen sulfide chemisorption should be carried out using solutions with a maximum concentration of sodium carbonate, 40...50 kg/m3. The presence of ballast components (Na2S2O3, NaHCO3) slightly reduces the sorption capacity of an absorbing solution. The results obtained could be used in engineering calculations and when developing technology for purification of fuel gases from hydrogen sulfide by a quinhydrone method.

Author Biographies

Andriy Slyuzar, Lviv Polytechnic National University S. Bandery str., 12, Lviv, Ukraine, 79013

PhD, Associate Professor

Department of Chemistry and Technology of Inorganic Substances

Yaroslav Kalymon, Lviv Polytechnic National University S. Bandery str., 12, Lviv, Ukraine, 79013

Doctor of Technical Sciences, Professor

Department of Chemistry and Technology of Inorganic Substances

Zenoviy Znak, Lviv Polytechnic National University S. Bandery str., 12, Lviv, Ukraine, 79013

Doctor of Technical Sciences, Professor, Head of Department

Department of Chemistry and Technology of Inorganic Substances

Andriy Helesh, Lviv Polytechnic National University S. Bandery str., 12, Lviv, Ukraine, 79013

Doctor of Technical Sciences, Associate Professor

Department of Chemistry and Technology of Inorganic Substances

References

  1. Mokhatab, S., Poe, W. A., Mak, J. Y. (2019). Sulfur Recovery and Handling. Handbook of Natural Gas Transmission and Processing, 271–305. doi: https://doi.org/10.1016/b978-0-12-815817-3.00008-3
  2. Kohl, A. L., Nielsen, R. B. (1997). Gas Purification. Gulf Professional Publishing, 900. doi: https://doi.org/10.1016/b978-0-88415-220-0.x5000-9
  3. Yavorskiy, V., Slyuzar, A., Kalymon, J. (2016). Sulfur gas production in ukraine (review). Chemistry & Chemical Technology, 10 (4s), 613–619. doi: https://doi.org/10.23939/chcht10.04si.613
  4. Slyuzar, A. V., Znak, Z. O., Kalymon, Ya. A., Bukliv, R. L. (2019). Methods of purification and processing of hydrogen sulfide-containing gases: a review. Voprosy khimii i khimicheskoi tekhnologii, 3, 83–97. doi: https://doi.org/10.32434/0321-4095-2019-124-3-83-97
  5. Miltner, M., Makaruk, A., Harasek, M. (2017). Review on available biogas upgrading technologies and innovations towards advanced solutions. Journal of Cleaner Production, 161, 1329–1337. doi: https://doi.org/10.1016/j.jclepro.2017.06.045
  6. Horikawa, M. S., Rossi, F., Gimenes, M. L., Costa, C. M. M., Silva, M. G. C. da. (2004). Chemical absorption of H2S for biogas purification. Brazilian Journal of Chemical Engineering, 21 (3), 415–422. doi: https://doi.org/10.1590/s0104-66322004000300006
  7. Ou, H.-W., Chou, M.-S., Chang, H.-Y. (2020). Removal of Hydrogen Sulfide from Biogas Using a Bubbling Tank Fed with Aerated Wastewater. Aerosol and Air Quality Research, 20, 643–653. doi: https://doi.org/10.4209/aaqr.2019.12.0647
  8. Azizi, M., Biard, P.-F., Couvert, A., Ben Amor, M. (2014). Simulation of hydrogen sulphide absorption in alkaline solution using a packed column. Environmental Technology, 35 (24), 3105–3115. doi: https://doi.org/10.1080/09593330.2014.931470
  9. Bobek, J., Rippel-Pethő, D., Molnár, É., Bocsi, R. (2016). Selective Hydrogen Sulphide Removal from Acid Gas by Alkali Chemisorption in a Jet Reactor. Hungarian Journal of Industry and Chemistry, 44 (1), 51–54. doi: https://doi.org/10.1515/hjic-2016-0006
  10. Slyuzar, A., Znak, Z., Kalymon, Y., Helesh, A. (2020). Study of Oxygen Chemisorption During Regeneration of Quinhydrone Absorbing Solution in the Apparatus with a Continuous Bubbling Layer. Chemistry and Chemical Technology, 14 (2), 257–263. doi: https://doi.org/10.23939/chcht14.02.257
  11. Yavorskyi, V., Helesh, A., Yavorskyi, I., Kalymon, Y. (2016). А theoretical analysis of chemisorption of sulfur (IV) oxide. Rationale for the choice of an efficient mass-exchange apparatus. Eastern-European Journal of Enterprise Technologies, 1 (6 (79)), 32–40. doi: https://doi.org/10.15587/1729-4061.2016.60312
  12. Chapoy, A., Mohammadi, A. H., Tohidi, B., Valtz, A., Richon, D. (2005). Experimental Measurement and Phase Behavior Modeling of Hydrogen Sulfide−Water Binary System. Industrial & Engineering Chemistry Research, 44 (19), 7567–7574. doi: https://doi.org/10.1021/ie050201h
  13. Peng, C., Mao, S., Hu, J., He, L. (2019). A Helmholtz free energy equation of state for the vapor-liquid equilibrium and PVTx properties of the H2S H2O mixture and its application to the H2S H2O NaCl system. Applied Geochemistry, 101, 19–30. doi: https://doi.org/10.1016/j.apgeochem.2018.12.021
  14. Li, J., Wei, L., Li, X. (2015). An improved cubic model for the mutual solubilities of CO2–CH4–H2S–brine systems to high temperature, pressure and salinity. Applied Geochemistry, 54, 1–12. doi: https://doi.org/10.1016/j.apgeochem.2014.12.015
  15. Xia, J., Pérez-Salado Kamps, Á., Rumpf, B., Maurer, G. (2000). Solubility of Hydrogen Sulfide in Aqueous Solutions of the Single Salts Sodium Sulfate, Ammonium Sulfate, Sodium Chloride, and Ammonium Chloride at Temperatures from 313 to 393 K and Total Pressures up to 10 MPa. Industrial & Engineering Chemistry Research, 39 (4), 1064–1073. doi: https://doi.org/10.1021/ie990416p
  16. Zhao, Z., Xing, X., Tang, Z., Zhao, Y., Fei, W., Liang, X. et. al. (2017). Solubility of CO2 and H2S in carbonates solvent: Experiment and quantum chemistry calculation. International Journal of Greenhouse Gas Control, 59, 123–135. doi: https://doi.org/10.1016/j.ijggc.2017.02.011
  17. Eldien, W. N., Mmohammed, B. M., Zakaria, A. Z., Sohily, A. (2016). Enhancement Factor Simulation of H2S Absorption by Fe2(SO4)3 Aqueous. International Journal of Scientific and Research Publications, 6 (6), 687–693.
  18. Luiz de Medeiros, J., Chagas Barbosa, L., Araújo, O. de Q. F. (2013). Equilibrium Approach for CO2 and H2S Absorption with Aqueous Solutions of Alkanolamines: Theory and Parameter Estimation. Industrial & Engineering Chemistry Research, 52 (26), 9203–9226. doi: https://doi.org/10.1021/ie302558b
  19. Shoukat, U., Pinto, D., Knuutila, H. (2019). Study of Various Aqueous and Non-Aqueous Amine Blends for Hydrogen Sulfide Removal from Natural Gas. Processes, 7 (3), 160. doi: https://doi.org/10.3390/pr7030160
  20. Li, H., Li, L., Xu, J., Li, Y. (2019). Selective absorption of H2S from CO2 using sterically hindered amines at high pressure. Petroleum Science and Technology, 37 (15), 1825–1829. doi: https://doi.org/10.1080/10916466.2019.1608239
  21. Ramm, V. M. (1976). Absorbtsiya gazov. Moscow: Himiya, 655.
  22. Litvinenko, M. S. (1952). Ravnovesie v sisteme serovodorod i uglekislota – vodnye rastvory karbonata natriya ili kaliya. Zhurnal prikladnoy himii, XXV (5), 516–531.
  23. Yue, J., Chu, C., Zhang, W., Zheng, S. (2018). Influence of by-product salts and Na2CO3 contents on gas–liquid mass transfer process in wet desulfurization of water gas. Clean Technologies and Environmental Policy, 20 (6), 1367–1375. doi: https://doi.org/10.1007/s10098-018-1541-3
  24. Marahovskiy, L. F., Sobina, N. A., Kuznetsov, V. D., Istomin, V. V. (1988). Ravnovesie v karbonatnih rastvorah pri odnovremennom pogloshchenii H2S i HCN iz koksovogo gaza. Koks i himiya, 7, 32–34.
  25. Bannikov, L. P., Kovalev, E. T., Toshinskiy, V. I. (2007). O vliyanii ballastnyh soley na povyshenie partsial'nogo davleniya serovodoroda pri ego ulavlivanii iz koksovogo gaza po vakuum-karbonatnomu metodu. Uglehimicheskiy zhurnal, 6, 59–63.
  26. Grebenyuk, A. F., Garmata, E. Yu., Milyutin, A. V. (2000). Issledovanie ravnovesiya pri absorbtsii serovodoroda iz koksovogo gaza i regeneratsii poglotitel'nogo rastvora vakuum-sodovoy seroochistki. Koks i himiya, 9, 25–28.
  27. Kurylets, O. H., Kalymon, Ya. A. (1994). Analiz nyzkokontsentrova-nykh sirkovmisnykh haziv z ventyliatsiynykh vykydiv vyrobnytstva. Visnyk Derzhavnoho universytetu «Lvivska politekhnika», 276, 87–88.
  28. Yavorskyi, V. T., Kalymon, Y. A., Sliuzar, A. V. (2014) Pat. No. 110387 UA. Sposib ochyshchennia palyvnykh haziv vid sirkovodniu z oderzhanniam dribnodyspersnoi sirky. No. a201400031; declareted: 08.01.2014; published: 25.12.2015, Bul. No. 24.

Downloads

Published

2020-10-23

How to Cite

Slyuzar, A., Kalymon, Y., Znak, Z., & Helesh, A. (2020). Investigating equilibrium in the system of a hydrogen sulfide-quinhydrone absorbing solution. Eastern-European Journal of Enterprise Technologies, 5(6 (107), 76–82. https://doi.org/10.15587/1729-4061.2020.214425

Issue

Section

Technology organic and inorganic substances