Design of mated parts using polymeric materials with enhanced tribotechnical characteristics

Authors

DOI:

https://doi.org/10.15587/1729-4061.2020.214547

Keywords:

polyamide, high-modulus fillers, abrasive resistance, metallography, tribological property, polymer composite, fiberglass

Abstract

This paper reports a comparative study of the polymeric materials operating in conjugation with steel. In agricultural engineering, a significant role in structural materials belongs to polymer composites. This type of material is characterized by the low price, small technological cost, as well as acceptable processing characteristics. It has been found that it is necessary to form, for each type of mated parts, a set of materials that could maximally meet the operational conditions. To describe the operating conditions in more detail, they need to be generalized for the specific tribological and loading characteristics. Based on this, such load regimes were selected that correspond to the movable mated parts in sowing complexes. For these mated parts, it was necessary, in the course of the tribological study, to choose a material with minimal technological deviations but with enhanced tribotechnical characteristics.

The result of this study has established that under the predefined conditions a polymer-composite material with the high-modulus filler PA-6.6+30 % F demonstrates the best tribophysical characteristics compared to the material PA-6.6. The proposed material, in conjugation with steel 1.1191, has a friction coefficient that is 38...41 % lower, while the temperature in the contact area is 8...12 % less, than that in conjugation with the material PA-6.6. Based on the metallographic analysis of friction surfaces, one can argue that a polymer composite with a high-modulus filler creates favorable conditions for their implementation in the moving units of machines.

The results reported here make it possible to analyze and synthesize composite materials primarily for agricultural engineering, taking into consideration their tribological properties. The findings may be particularly interesting for service departments and enterprises producing parts for sowing complexes

Author Biographies

Anatolii Kobets, Dnipro State Agrarian and Economic University Serhiya Yefremova str., 25, Dnipro, Ukraine, 49600

Doctor of Public Administration, PhD, Professor, Rector

Viktor Aulin, Central Ukrainian National Technical University Universytetskyi ave., 8, Kropyvnytskyi, Ukraine, 25006

Doctor of Technical Sciences, Professor

Department of Maintenance and Repair of Machines

Oleksii Derkach, Dnipro State Agrarian and Economic University Serhiya Yefremova str., 25, Dnipro, Ukraine, 49600

PhD, Associate Professor

Department of Exploitation Agricultural of Machine

Dmytro Makarenko, Dnipro State Agrarian and Economic University Serhiya Yefremova str., 25, Dnipro, Ukraine, 49600

PhD, Associate Professor

Department of Exploitation Agricultural of Machine

Andrii Hrynkiv, Central Ukrainian National Technical University Universytetskyi ave., 8, Kropyvnytskyi, Ukraine, 25006

PhD, Senior Researcher

Department of Maintenance and Repair of Machines

Dmytro Krutous, Dnipro State Agrarian and Economic University Serhiya Yefremova str., 25, Dnipro, Ukraine, 49600

Postgraduate Student

Department of Exploitation Agricultural of Machine

Evgeniy Muranov, Central Ukrainian National Technical University Universytetskyi ave., 8, Kropyvnytskyi, Ukraine, 25006

Junior Researcher

Department of Maintenance and Repair of Machines

References

  1. Markowska, O., Markowski, T., Sobczyk, M. (2020). Analysis of the mechanical properties of polymer composites for the production of machine parts used as substitutes for elements obtained from metals. Polimery, 65 (04), 311–314. doi: https://doi.org/10.14314/polimery.2020.4.8
  2. Singh, A. K., Siddhartha, Singh, P. K. (2017). Polymer spur gears behaviors under different loading conditions: A review. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 232 (2), 210–228. doi: https://doi.org/10.1177/1350650117711595
  3. Quan, Z., Suhr, J., Yu, J., Qin, X., Cotton, C., Mirotznik, M., Chou, T.-W. (2018). Printing direction dependence of mechanical behavior of additively manufactured 3D preforms and composites. Composite Structures, 184, 917–923. doi: https://doi.org/10.1016/j.compstruct.2017.10.055
  4. Aulin, V., Lyashuk, O., Tykhyi, A., Karpushyn, S., Denysiuk, N. (2018). Influence of Rheological Properties of a Soil Layer Adjacent to the Working Body Cutting Element on the Mechanism of Soil Cultivation. Acta Technologica Agriculturae, 21 (4), 153–159. doi: https://doi.org/10.2478/ata-2018-0028
  5. Kamiya, R., Cheeseman, B. A., Popper, P., Chou, T.-W. (2000). Some recent advances in the fabrication and design of three-dimensional textile preforms: a review. Composites Science and Technology, 60 (1), 33–47. doi: https://doi.org/10.1016/s0266-3538(99)00093-7
  6. Huang, Z.-M., Zhang, Y.-Z., Kotaki, M., Ramakrishna, S. (2003). A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology, 63 (15), 2223–2253. doi: https://doi.org/10.1016/s0266-3538(03)00178-7
  7. Tekinalp, H. L., Kunc, V., Velez-Garcia, G. M., Duty, C. E., Love, L. J., Naskar, A. K. et. al. (2014). Highly oriented carbon fiber–polymer composites via additive manufacturing. Composites Science and Technology, 105, 144–150. doi: https://doi.org/10.1016/j.compscitech.2014.10.009
  8. Chong, S., Yang, T. C.-K., Lee, K.-C., Chen, Y.-F., Juan, J. C., Tiong, T. J. et. al. (2020). Evaluation of the physico-mechanical properties of activated-carbon enhanced recycled polyethylene/polypropylene 3D printing filament. Sādhanā, 45 (1). doi: https://doi.org/10.1007/s12046-020-1294-7
  9. Karsli, N. G., Aytac, A. (2013). Tensile and thermomechanical properties of short carbon fiber reinforced polyamide 6 composites. Composites Part B: Engineering, 51, 270–275. doi: https://doi.org/10.1016/j.compositesb.2013.03.023
  10. Aulin, V., Hrynkiv, A., Lysenko, S., Rohovskii, I., Chernovol, M., Lyashuk, O., Zamota, T. (2019). Studying truck transmission oils using the method of thermal-oxidative stability during vehicle operation. Eastern-European Journal of Enterprise Technologies, 1 (6 (97)), 6–12. doi: https://doi.org/10.15587/1729-4061.2019.156150
  11. Aulin, V. V., Chernovol, M. I., Pankov, A. O., Zamota, T. M., Panayotov, K. K. (2017). Sowing machines and systems based on the elements of fluidics. INMATEH - Agricultural Engineering, 53 (3), 21–28. Available at: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85039172369&partnerID=40&md5=2468069fc8914b34091c229527a0cc3e
  12. Aulin, V., Lysenko, S., Lyashuk, O., Hrinkiv, A., Velykodnyi, D., Vovk, Y. et. al. (2019). Wear Resistance Increase of Samples Tribomating in Oil Composite with Geo Modifier КGМF-1. Tribology in Industry, 41 (2), 156–165. doi: https://doi.org/10.24874/ti.2019.41.02.02
  13. Aulin, V., Hrynkiv, A., Lysenko, S., Dykha, A., Zamota, T., Dzyura, V. (2019). Exploring a possibility to control the stressed­strained state of cylinder liners in diesel engines by the tribotechnology of alignment. Eastern-European Journal of Enterprise Technologies, 3 (12 (99)), 6–16. doi: https://doi.org/10.15587/1729-4061.2019.171619
  14. Savkiv, V., Mykhailyshyn, R., Fendo, O., Mykhailyshyn, M. (2017). Orientation Modeling of Bernoulli Gripper Device with Off-Centered Masses of the Manipulating Object. Procedia Engineering, 187, 264–271. doi: https://doi.org/10.1016/j.proeng.2017.04.374
  15. Savkiv, V., Mykhailyshyn, R., Duchon, F., Fendo, O. (2017). Justification of design and parameters of Bernoulli–vacuum gripping device. International Journal of Advanced Robotic Systems, 14 (6), 172988141774174. doi: https://doi.org/10.1177/1729881417741740
  16. Trizuljak, A., Duchoň, F., Rodina, J., Babinec, A., Dekan, M., Mykhailyshyn, R. (2019). Control of a small quadrotor for swarm operation. Journal of Electrical Engineering, 70 (1), 3–15. doi: https://doi.org/10.2478/jee-2019-0001
  17. Aulin, V., Derkach, O., Makarenko, D., Hrynkiv, A., Pankov, A., Tykhyi, A. (2019). Analysis of tribological efficiency of movable junctions “polymeric­composite materials ‒ steel.” Eastern-European Journal of Enterprise Technologies, 4 (12 (100)), 6–15. doi: https://doi.org/10.15587/1729-4061.2019.176845
  18. Kass, M. D., Janke, C., Theiss, T., Baustian, J., Wolf, L., Koch, W. (2015). Compatibility Assessment of Plastic Infrastructure Materials with Test Fuels Representing E10 and iBu16. SAE International Journal of Fuels and Lubricants, 8 (1), 95–110. doi: https://doi.org/10.4271/2015-01-0894
  19. Aulin, V., Hrynkiv, A., Lyashuk, O., Vovk, Y., Lysenko, S., Holub, D. et. al. (2020). Increasing the Functioning Efficiency of the Working Warehouse of the “UVK Ukraine” Company Transport and Logistics Center. Communications - Scientific Letters of the University of Zilina, 22 (2), 3–14. doi: https://doi.org/10.26552/com.c.2020.2.3-14
  20. Pinto, C., Andrade e Silva, L. G. (2007). Study of ionizing radiation on the properties of polyamide 6 with fiberglass reinforcement. Radiation Physics and Chemistry, 76 (11-12), 1708–1710. doi: https://doi.org/10.1016/j.radphyschem.2007.05.004
  21. Aulin, V. V., Pankov, A. O., Zamota, T. M., Lyashuk, O. L., Hrynkiv, A. V., Tykhyi, A. A., Kuzyk, A. V. (2019). Development of Mechatronic Module for the Seeding Control System. INMATEH Agricultural Engineering, 59 (3), 181–188. doi: https://doi.org/10.35633/inmateh-59-20
  22. Braun, D., Disselhoff, R., Guckel, C., Illing, G. (2001). Rohstoffliches Recycling von glasfaserverstärktem Polyamid-6. Chemie Ingenieur Technik, 73 (3), 183–190. doi: https://doi.org/10.1002/1522-2640(200103)73:3<183::aid-cite183>3.0.co;2-j
  23. Bernasconi, A., Davoli, P., Rossin, D., Armanni, C. (2007). Effect of reprocessing on the fatigue strength of a fibreglass reinforced polyamide. Composites Part A: Applied Science and Manufacturing, 38 (3), 710–718. doi: https://doi.org/10.1016/j.compositesa.2006.09.012
  24. Fu, S.-Y., Mai, Y.-W., Ching, E. C.-Y., Li, R. K. Y. (2002). Correction of the measurement of fiber length of short fiber reinforced thermoplastics. Composites Part A: Applied Science and Manufacturing, 33 (11), 1549–1555. doi: https://doi.org/10.1016/s1359-835x(02)00114-8
  25. Aulin, V., Hrynkiv, A., Lysenko, S., Zamota, T., Pankov, A., Tykhyi, A. (2019). Determining the rational composition of tribologically active additive to oil to improve characteristics of tribosystems. Eastern-European Journal of Enterprise Technologies, 6 (12 (102)), 52–64. doi: https://doi.org/10.15587/1729-4061.2019.184496
  26. Aulin, V., Lyashuk, O., Hrynkiv, A., Lysenko, S., Zamota, T., Vovk, Y. et. al. (2019). Determination of the Rational Composition of the Additive to Oil with the Use of the Katerynivka Friction Geo Modifier. Tribology in Industry, 41 (4), 548–562. doi: https://doi.org/10.24874/ti.2019.41.04.08
  27. Aulin, V., Hrynkiv, A., Lysenko, S., Lyashuk, O., Zamota, T., Holub, D. (2019). Studying the tribological properties of mated materials C61900 - A48-25BC1.25BNo. 25 in composite oils containing geomodifiers. Eastern-European Journal of Enterprise Technologies, 5 (12 (101)), 38–47. doi: https://doi.org/10.15587/1729-4061.2019.179900
  28. Thomason, J. L. (2001). Micromechanical parameters from macromechanical measurements on glass reinforced polyamide 6,6. Composites Science and Technology, 61 (14), 2007–2016. doi: https://doi.org/10.1016/s0266-3538(01)00062-8
  29. Gnatowski, A., Kijo-Kleczkowska, A., Gołębski, R., Mirek, K. (2019). Analysis of polymeric materials properties changes after addition of reinforcing fibers. International Journal of Numerical Methods for Heat & Fluid Flow, 30 (6), 2833–2843. doi: https://doi.org/10.1108/hff-02-2019-0107
  30. Ren, L., Chen, J., Lu, Q., Han, J., Wu, H. (2021). Anti-biofouling nanofiltration membrane constructed by in-situ photo-grafting bactericidal and hydrophilic polymers. Journal of Membrane Science, 617, 118658. doi: https://doi.org/10.1016/j.memsci.2020.118658
  31. Gnatowski, A., Koszkul, J. (2005). Investigations of the influence of compatibilizer and filler type on the properties of chosen polymer blends. Journal of Materials Processing Technology, 162-163, 52–58. doi: https://doi.org/10.1016/j.jmatprotec.2005.02.240
  32. Esmaeillou, B., Fitoussi, J., Lucas, A., Tcharkhtchi, A. (2011). Multi-scale experimental analysis of the tension-tension fatigue behavior of a short glass fiber reinforced polyamide composite. Procedia Engineering, 10, 2117–2122. doi: https://doi.org/10.1016/j.proeng.2011.04.350
  33. Vassilopoulos, A. P., Manshadi, B. D., Keller, T. (2010). Piecewise non-linear constant life diagram formulation for FRP composite materials. International Journal of Fatigue, 32 (10), 1731–1738. doi: https://doi.org/10.1016/j.ijfatigue.2010.03.013
  34. Hrynkiv, A., Rogovskii, I., Aulin, V., Lysenko, S., Titova, L., Zagurskiy, O., Kolosok, I. (2020). Development of a system for determining the informativeness of the diagnosing parameters for a cylinder­piston group in the diesel engine during operation. Eastern-European Journal of Enterprise Technologies, 3 (5 (105)), 19–29. doi: https://doi.org/10.15587/1729-4061.2020.206073
  35. Vassilopoulos, A. P., Manshadi, B. D., Keller, T. (2010). Piecewise non-linear constant life diagram formulation for FRP composite materials. International Journal of Fatigue, 32 (10), 1731–1738. doi: https://doi.org/10.1016/j.ijfatigue.2010.03.013
  36. Vassilopoulos, A., Georgopoulos, E., Dionysopoulos, V. (2007). Artificial neural networks in spectrum fatigue life prediction of composite materials. International Journal of Fatigue, 29 (1), 20–29. doi: https://doi.org/10.1016/j.ijfatigue.2006.03.004
  37. Faridirad, F., Ahmadi, S., Barmar, M. (2016). Polyamide/Carbon Nanoparticles Nanocomposites: A Review. Polymer Engineering & Science, 57 (5), 475–494. doi: https://doi.org/10.1002/pen.24444
  38. Okumura, T., Sonobe, K., Ohashi, A., Watanabe, H., Watanabe, K., Oyamada, H. et. al. (2020). Synthesis of polyamide-hydroxyapatite nanocomposites. Polymer Engineering & Science, 60 (7), 1699–1711. doi: https://doi.org/10.1002/pen.25414
  39. Marset, D., Dolza, C., Boronat, T., Montanes, N., Balart, R., Sanchez-Nacher, L., Quiles-Carrillo, L. (2020). Injection-Molded Parts of Partially Biobased Polyamide 610 and Biobased Halloysite Nanotubes. Polymers, 12 (7), 1503. doi: https://doi.org/10.3390/polym12071503
  40. Kamerling, S., Schlarb, A. K. (2020). Magnesium hydroxide – A new lever for increasing the performance and reliability of PA66/steel tribosystems. Tribology International, 147, 106271. doi: https://doi.org/10.1016/j.triboint.2020.106271

Downloads

Published

2020-10-31

How to Cite

Kobets, A., Aulin, V., Derkach, O., Makarenko, D., Hrynkiv, A., Krutous, D., & Muranov, E. (2020). Design of mated parts using polymeric materials with enhanced tribotechnical characteristics. Eastern-European Journal of Enterprise Technologies, 5(12 (107), 49–57. https://doi.org/10.15587/1729-4061.2020.214547

Issue

Section

Materials Science